
Release 1.1 1 of 16 2/19/2013

Part Space

A non-mathematical introduction to the concepts
of the sheaf data model

David M. Butler

Limit Point Systems, Inc.

We give a (mostly) non-mathematical description of the
basic concepts of the sheaf data model using the intuitive
notions of part and inclusion.

1 Introduction

The SheafSystem consists of several toolkits for managing scientific data. The theoretical
basis of the SheafSystem is the sheaf data model, a mathematical model for storing and
manipulating instances of general data types, especially those commonly used in
scientific computing. The objective of this document is to introduce the basic concepts of
the sheaf data model in as intuitive a manner as possible, emphasizing the basic ideas
while avoiding as much mathematical detail as possible. The mathematical aspects are
covered in a separate document [1].

2 Parts and part spaces

We'll base our non-mathematical description on the intuitive ideas of part and inclusion
and on the notion of a part space. A part space is a container for creating, holding, and
manipulating distinct assemblies of parts. We'll discuss the features of the part space
container itself in detail shortly, but first we need to describe the parts the container
holds.

2.1 Basic parts and composite parts

A user can create two categories of parts in part space, basic parts and composite parts. A
basic part is a fundamental building block. The user can invent different types of basic
parts and instantiate them as desired. A composite part is an assembly of basic parts or
other composite parts.

We need some examples to clarify these notions. Simple spatial structures are a rich and
practically important source of examples, so we'll give several spatial examples, starting
really simple and then getting more complex.

2.1.1 Vertex example

First, the simplest possible spatial example: a single point or "vertex". A single vertex
can't be subdivided, so it is a basic part.

Part Space David M. Butler

Release 1.1 2 of 16 2/19/2013

Figure 1: Basic part for single vertex example.

You might expect that we can't make any assemblies with just a single vertex, but
actually there are two: the single vertex assembly and the empty assembly, as shown in
Figure 2, where the enclosing dotted line represents assembly.

Figure 2: Assemblies for single vertex example.

These may be unexpected, but they are important if we want to be consistent and
complete. The single part assemblies are identical to their respective basic parts as spatial
structures, but part space is a container for assemblies, so an individual basic part is
treated as an assembly containing a single part. The empty assembly is important both for
mathematical completeness and for practical programming reasons.

There's not much more we can do with just a single point, so let's assume we have
several, 3 to be specific, as shown in Figure 3:

v0 v1 v2

Figure 3: Basic parts for 3 vertex example.

We can make several assemblies with 3 vertices, in fact, the figure actually shows one
such assembly, namely all 3 vertices: {v0, v1, v2}. Figure 4 shows all the assemblies we
can make with this set of basic parts:

• the 3 part assembly {v0, v1, v2},

• the 2 part assemblies {v0, v1}, {v0, v2}, {v1, v2},

• the single part assemblies {v0}, {v1}, {v2}, and

• and the empty assembly {}.

v0

v0

Part Space David M. Butler

Release 1.1 3 of 16 2/19/2013

v0 v1 v2

v0 v1 v2

v0 v1 v0 v2 v1 v2

Figure 4: Assemblies for 3 vertex example.

For this example, the part space (the set of distinct assemblies) is precisely the set of all
subsets of the basic parts. It is well known that the number of subsets of a set with n
members is 2n. In this case n = 3 and the size of the part space = 23 = 8. For larger sets of
basic parts, the number of subsets gets really big really fast. We'll see in the next example
that the part space is not always the set of all subsets of the basic parts. Nevertheless, the
number of assemblies is always greater, and usually much greater, than the number of
basic parts.

2.1.2 Line segment example

The next simplest spatial example is a line segment, as shown in Figure 5. Once again we
choose 3 basic parts: the line segment, the vertex at its left end, and the vertex at its right
end. (The dotted representation of the segment in the diagram for the v0 and v1 parts is
just for visual reference, the segment is not part of the v0 or v1 parts.)

s0 s0
v0

s0
v1

Figure 5: Basic parts for the line segment example.

It's important to be very specific here: the segment includes the two vertices at its ends
and all the spatial points in between. This is a critical difference between this example
and the previous example: the basic parts aren't entirely independent, the segment part
includes the two vertex parts. We can enumerate all the assemblies, as we did in the
vertex example, and these are shown in Figure 6.

Part Space David M. Butler

Release 1.1 4 of 16 2/19/2013

s0
v0 v1

v0 v1

s0

s0
v0

s0
v1

v0 v1

Figure 6: Assemblies for the line segment example.

But notice that since the basic parts aren't entirely independent, the assemblies don't all
yield distinct spatial structures. Since the segment already contains its end points, the
assemblies {s0}, {s0, v0}, {s0, v1}, and {s0, v0, v1} all correspond to exactly the same
spatial structure - the single basic part s0. We want part space to only contain distinct
assemblies, so it should only contain one of these. Which should we choose? The single
part assembly {s0} is an obvious choice, but it turns out that choosing the assembly with
all the included parts, namely {s0, v0, v1}, is also a useful choice, for reasons we'll see
shortly. So we make the latter choice, in which case the distinct assemblies for this
example are shown in Figure 7.

s0
v0 v1

v0 v1

v0 v1

Figure 7: Distinct assemblies for line segment example.

This example emphasizes the fundamental point we mentioned in the previous example:
part space is in general not the set of all subsets, is the set of all distinct assemblies.
Inclusion relationships between the basic parts are the essential feature determining what

Part Space David M. Butler

Release 1.1 5 of 16 2/19/2013

the distinct assemblies are. Only in the special case that no basic part is included in any
other basic part, such as in the vertex example above, is the part space equal to the set of
all subsets.

2.2 Organizing part space

Since inclusion relationships between parts are the essential feature, we can use them to
organize and even visualize part space. To do this, we have to examine these
relationships in more detail. The reason we chose {s0, v0, v1} as the representative
assembly above is because it makes the inclusion relationships explicit. Inspecting Figure
7, we see the following inclusion relationships:

{s0, v0, v1} includes {s0, v0, v1} (every subset includes itself)
{s0, v0, v1} includes {v0, v1}
{s0, v0, v1} includes {v0}
{s0, v0, v1} includes {v1}
{s0, v0, v1} includes {} (every subset includes the empty subset)
{v0, v1} includes {v0, v1}
{v0, v1} includes {v0}
{v0, v1} includes {v1}
{v0, v1} includes {}
{v0} includes {v0}
{v0} includes {}
{v1} includes {v1}
{v1} includes {}
{} includes {}

This list is an exhaustive enumeration of the inclusion relationships. It's complete, but it's
not a very efficient way to represent the necessary information. Every subset includes
itself, so why bother to list the self-inclusions; remove them from the list. Furthermore, if
subset A includes subset B and subset B includes subset C, then we know A includes C,
so let's remove any item in the list that is equivalent to a combination of other inclusions,
and list only the direct inclusions. Reducing the relation in this way is called the
"transitive, reflexive reduction" and the reduced inclusion relation is called the "cover"
relation. A "covers" B if A immediately includes B, that is, there isn't any C such that A
includes C and C includes B. The cover relation is much smaller:

{s0, v0, v1} covers {v0, v1}
{v0, v1} covers {v0}
{v0, v1} covers {v1}
{v0} covers {}
{v1} covers {}

The cover relation gives us a simple and efficient way to organize part space: we
construct a graph using the cover relation. Each of our assemblies is a node in the graph
and there is a link between two nodes A and B if and only if A covers B. This results in a

Part Space David M. Butler

Release 1.1 6 of 16 2/19/2013

directed acyclic graph, a well-known, powerful, and efficient data structure we can use to
represent part space on the computer.

Furthermore, there's a natural way to visualize this "cover relation graph". Draw a plane
diagram with nodes arranged so that if A covers B, node B is below node A on the page
and there is a link between them. Mathematicians call this a "Hasse diagram". The Hasse
diagram corresponding to Figure 7 is shown in Figure 8.

{s0, v0, v1}

{v0, v1}

{v0} {v1}

{}

Figure 8: Hasse diagram for line segment example.

2.3 Basic parts and composite parts revisited

The Hasse diagram gives us a nice way to visualize part space. For instance, it is easy to
visually confirm the following feature: we can recover the inclusion relationships from
the cover relation graph because part A includes part B precisely when there is a path
from A to B in the cover relation graph.

We can make the visualization even more useful by identifying the basic parts and
composite parts on the diagram. Let's identify the basic parts first. We've already
mentioned above that a single part assembly is identical as a spatial structure to the single
basic part it contains, so we can identify the assemblies {v0} and {v1} as basic parts.
Now remember that the assemblies {s0}, {s0, v0}, {s0, v1}, and {s0, v0, e1} were
equivalent and we chose {s0, v0, v1} as the representative. Since it is equivalent to the
single part assembly {s0}, {s0, v0, v1} also represents a basic part. Figure 9 shows the
part space for the line segment example with basic parts in red.

Part Space David M. Butler

Release 1.1 7 of 16 2/19/2013

{s0, v0, v1}

{v0, v1}

{v0} {v1}

{}

Figure 9: Identification of basic parts for the line segment example.

The diagram makes another feature clear: all the basic parts included in a given assembly
are below the assembly in the graph. So we don't have to store the assemblies separately;
we just create a node in the graph for the assembly, link it up appropriately, and then we
can generate the list of basic parts in the assembly by traversing down from the node
representing the assembly, collecting basic parts as we go.

The set of all nodes at or below a given node A is called the "down set" of A, so the
assembly list for a given part is just the set of basic parts in its down set. Every part has
an assembly list that can be generated this way. Furthermore, we can also go the reverse
direction: it is always possible, for every assembly list, to create a part from which the
list, or more accurately its equivalent representative list, can be generated. This part, and
the operation that creates it, is called the join of the parts in the assembly list. So parts
and assembly lists are equivalent in this sense and this gives us two ways to think about
any part: as an assembly of subparts or as the unique part we get when we join the
subparts together.

s0

c0

v0 v1

{}

Figure 10: Part space for the line segment example.

Part Space David M. Butler

Release 1.1 8 of 16 2/19/2013

We can thus abandon any explicit mention of assembly and just visualize basic and
composite parts, generating the assembly lists by traversal whenever we need them.
Figure 10 shows the part space in this way, where the composite part corresponding to
assembly {v0, v1} has been named c0.

There are three additional, less obvious features of part space that are displayed in the
diagram.

First, the empty assembly is always at the bottom of the diagram because nothing can be
smaller than the empty assembly. In fact, the empty assembly is usually referred to as
bottom.

Second, the smallest non-empty parts in a part space are the parts that cover bottom and
they are always basic parts. The smallest parts can't be composite parts because there are
no smaller non-empty parts they can include. Since these parts have no subparts, they are
referred to as atoms.

Third, the diagram actually displays what is basic about a basic part. Note that the basic
part s0 is distinct from and covers the composite part c0 = {v0, v1}. Since {v0, v1} is
precisely the set of (strict) subparts of s0, this means that s0 is not equal to the assembly
of its subparts. In other words, a basic part is a part which is greater than the sum of its
subparts; a basic part introduces new information into the part space. Furthermore, the
relationship between s0 and c0 is general: every basic part covers exactly one other part,
namely, the composite part which is the sum of its subparts. Note that is even true for the
smallest basic parts, the atoms. Since an atom has no subparts, the sum of its subparts is
the empty assembly, bottom, and the atom covers bottom.

2.4 Part space in practice

The cover relation graph or Hasse diagram provides a complete representation of
inclusion for a part space. It represents all the basic parts, all the composite parts, and all
their inclusion relationships in a single data structure and diagram. We don't explicitly
store the list of basic parts for each composite part, instead we generate the list by
searching its down set for basic parts.

However, as we mentioned above, the total number of parts in a part space is always
much larger than the number of basic parts. There are many more possible composite
parts than basic ones and representing the entire part space is completely infeasible, in
practice. Fortunately, we don't have to. A part space is completely determined by its basic
parts, so we only need to represent the graph for the basic parts and whichever composite
parts we are specifically interested in. The examples in the remainder of this tutorial rely
on this policy. In particular, although the empty composite part, bottom, is in principle a
part in every part space, we rarely have any interest in it and typically will not display it
in the diagrams.

Part Space David M. Butler

Release 1.1 9 of 16 2/19/2013

3 Part spaces for specific types.

As we've described it so far, part space just represents the part structure, that is, whether a
part is basic or composite and the relationships between the parts. It doesn't know
anything about the specific attributes or behavior of the basic parts. They can be any
specific kind of object we are interested in.

If we want a part space to describe some specific kind of object, we need to expand our
notion of part space to include the data that is unique to the kind of object. We'll get to
such an expanded notion by what may seem to be a rather indirect route: by looking at
the notion of data persistence.

3.1 Data persistence

Data persistence refers to making the data created by an application program continue to
exist (persist) after the program has terminated. In practical terms, data persistence means
writing the data to disk and of course reading the data back in.

The data in a modern, object-oriented application is a complex web of interconnected
objects. Making such data persistent is a complex problem for which there are two main
solution approaches: object serialization and object-relational mapping.

The focus of the object serialization approach is to convert the objects to a stream of
primitive types (characters, integers, etc.) that file systems know how to deal with. The
stream must include both the state data of the objects and type information. Serialized
data must typically be read in its entirety, even if only a small piece is required. The
serialization approach is typically used for persistence within a single application or for
communication between closely related applications.

The focus of the object-relational mapping approach is to convert the objects into rows in
the tables of a relational database. Relational tables typically require each column in a
table to correspond to an "atomic" type, so each object must be converted to a collection
of primitive types. The object-relational mapping approach thus is similar to the
serialization approach in that the objects must be decomposed into their primitive parts,
but it is different in two important ways. First, the type information is stored separately,
in the schema of the database, and is expected to be relatively static. Second, the database
can be queried to access pieces of the object web. The object-relational mapping
approach is typically used when the data is used by many consumers with unknown
access patterns.

The requirements for a data persistence mechanism are highly application and
environment specific. There are multiple implementations of both of the above
approaches in current use but none satisfy all applications. In particular, none are well
suited to scientific computing. The main type of data in scientific computing is "field"
data, that is, data which represents how some physical property depends on space and/or
time. We'll discuss this in more detail below. For now we just note that we need a better
persistence mechanism for this kind of data, so it is useful to see how part space can
support persistence.

Part Space David M. Butler

Release 1.1 10 of 16 2/19/2013

3.2 The part space approach to persistence

We'll focus on persistence for languages like C++ that have strong typing. Strong typing
means that every object is an instance of some specific type. In C++, the types we are
interested in are primitive types and class types.

The C++ standard defines a specific set of primitive types: int, float, etc. Each primitive
type implies a finite set of values, the implementation of which is not specified.

Class types are programmer-defined types. Each class specifies a collection of data
members and a collection of function members. Since we are focusing on data
persistence, we will be mostly concerned with the data members. In C++, an object can
contain other objects, which are referred to as subobjects. A subobject can be a data
member subobject or a base class subobject. We'll refer to the set of immediate
subobjects associated with a class as the subobject schema, with each subobject specified
by a name and a type.

We'll start by following the object-relational approach and try to associate a relational
table with each class. The obvious approach is for each column of the table to represent a
subobject of the class and each row in the table to represent an instance (object) of the
class. That is, we'd like the relation schema to be the same as the subobject schema. The
difficulty in this approach is that a subobject of a class can be of any type, another class
type in particular, but an attribute of a relation must be a primitive type.

We can resolve this conflict by constructing a part space for the schema of the class. We
start by entering a part for the class itself - the class schema part. As we said above, a
class has both data members and function members, but our part space will represent only
the data members. This means the class schema part is conceptually more than the sum of
its data members and hence is a basic part. The class schema part covers a schema part
for each of its subobjects. We then recursively enter the subobjects of each subobject,
creating a cover relation graph. The recursion stops when we reach primitive subobjects,
since primitives have no parts.

An example will help clarify this process. We previously created several examples of
spatial structures. The basic parts in a spatial structure - segments, vertices and so on -
are generically called "cells" and a simple cell class hierarchy would be:

class cell: public spatial_structure
{
 string cell_type; // The type of spatial cell
}

class spatial_structure
{
 int d; // The spatial dimension of the structure.
}

Part Space David M. Butler

Release 1.1 11 of 16 2/19/2013

This class hierarchy is substantially simpler than the corresponding actual hierarchy in
the PartSpace library, but it contains the features we need to serve as an example. Figure
11 shows the part space for the schema of the cell class hierarchy.

cell typed

cell

spatial_structure

Figure 11: Part space for the schema of the cell class hierarchy.

Now we can represent the line segment example as a table using the part space as a
schema, with the columns in the table defined by the atoms in the part space, as shown in
Figure 12. As suggested visually in Figure 12, we can think of the cover relation graph of
the schema part space being "attached" to the columns. The cell objects themselves form
a part space, so we can also think of the cover relation graph of the line segment part
space being attached to the rows. We just have to make the cover links point to the right
instead of down in order to make the graph nodes line up with the rows. Now the type
"cell" is represented by a table with both a row part space and a column (schema) part
space.

vertex0
segment1

vertex0

cell typed

cell

spatial_structure

s0
c0

v0

v1

Figure 12: Table for line segment example.

Part Space David M. Butler

Release 1.1 12 of 16 2/19/2013

3.3 General method and interpretation

The construction of the preceding section can be interpreted as a general method for
constructing a table representation of any specific class type, as follows:

1. A type is represented by a table with both row and column (schema) part spaces.

2. A column part space corresponds to a collection of types related by subobject
inclusion and each member of the part space corresponds to a type. A typical type, in
practice, is somewhere in the interior of a column part space, that is it both includes
subobjects and is included as a subobject.

3. The basic parts of a column part space correspond to explicitly specified class or
primitive types. This captures the notion that an explicitly specified type is more than
the sum of its subobjects, it has associated operations or member functions that are
implied by the type but not explicitly represented in the part space. Cell in Figure 13
is an example.

4. The composite parts of a column part space correspond to types that can be implicitly
generated from the basic parts. An implicit type corresponds to a C++ struct with data
members but no member functions. The data members are precisely those defined by
its subobject schema (see item 7 below). For instance, the composite part cell s-
schema in Figure 13 has data members {spatial_structure, cell_type}.

5. The atoms of a column part space are types with no subobjects. A atom thus
represents either a class type with no base class and no data members or it represents
a primitive type. This captures the notion that the parts and implementation of a
primitive type are hidden and not represented in the part space. Cell_type is an
example.

6. The column part space for a given type is the down set of the corresponding member.
The down set of a member of a part space is itself a (sub) part space. For instance, the
column part space for class spatial structure consists of just spatial_structure linked to
d.

7. The subobject schema for a given type is specified by the largest basic parts in the
strict down set of the member of the column part space corresponding to the type.
(The "strict" down set of a given part is the set of parts strictly below the given part; it
doesn't include the given part itself.). For instance, examining Figure 11 (or Figure
13) we can see that the set of basic parts in the strict down set of cell is
{spatial_structure, d, cell_type}, but spatial_structure is larger than d, so the largest
members are {spatial_structure, cell_type}and this is indeed the subobject schema for
cell. Remembering that every assembly has an equivalent part given by the join of the
subparts in the assembly, we can also define the subobject schema to be the join of
the largest basic parts. This is a unique composite part in the part space, cell s-schema
in Figure 13. As with any part, we can think of the subobject schema as either an
assembly list or as a member of the part space.

Part Space David M. Butler

Release 1.1 13 of 16 2/19/2013

8. The relation schema for a given type is specified by the atoms of primitive type in the
down set of the member of the column part space corresponding to the type.
Equivalently, the relation schema is the join of the atoms of primitive type. We can
think of the relation schema as either a set of primitive subobjects or a member of the
part space. Cell r-schema as shown in Figure 13 is an example.

9. The relation schema for a type specifies the columns in the table representing the
type.

10. Each basic part in the row part space has a corresponding row in the table and
together they represent an instance of the type. The row contains precisely the new
information the basic part introduces into the part space. Conversely, every instance
of the type is represented by a basic part in the part space and row in the table.

11. Each composite part in the row part space does not have a corresponding row in the
table and represents a collection of instances. In the figures, composite parts are given
empty placeholder rows just to make nodes in the row graph line up with rows in the
table.

12. If schema member s' is included in schema member s, then the type defined by s' is a
subtype of the type defined by s [2]. Given an object o of type s, the subobject of type
s' is the object defined by projecting the table row of o onto the relation schema of s'.

vertex0
segment1

vertex0

s0
c0

v0

v1

cell typed

cell

spatial_structure cell r-schema

cell s-schema

Figure 13: Table for line segment example with composite parts for subobject schema (cell s-schema) and
relation schema (cell r-schema) of class cell.

4 The sheaf data model

We set out at the beginning of section 3 to expand our notion of part space to include type
specific data and the general method of the preceding section represents the successful

Part Space David M. Butler

Release 1.1 14 of 16 2/19/2013

conclusion of our quest. Although we started by following the object-relational approach
and tried to associate a relational table with each class type, the table produced by the
above method is not a relational table, as described by the relational data model. The data
model that describes the table + row part space + column part space we ended up with is
the sheaf data model.

4.1 Sheaf tables

The table + row part space + column part space construction is the central entity of the
sheaf data model and we'll refer to it as a "sheaf table". A sheaf data base is a collection
of sheaf tables. The sheaf data model treats every type as a sheaf table, at least
conceptually. That is, each instance of every type appears as a row in the sheaf table for
the type and has a corresponding basic part in the row graph of the table.

4.2 Schema tables

Every table has an associated table, its schema table, and the row graph of the schema
table provides the column graph for the primary table. As an example, the column graph
in our line segment table is given by the row graph from the cell schema table, shown in
Figure 14.

d

spatial
structure

cell type

cell

cell
s-schema

cell
r-schema

type size align

schema_part

string 8

int 8

spatial
structure 24

8

8

8

cell 40 8

is_tbl

false

false

false

false

Figure 14: cell schema table

A schema part row needs to specify the associated C++ type, the information needed to
allocate memory for the associated relation tuple, and whether the part defines a row
attribute or a table attribute. A row attribute is an ordinary attribute, each row in the table
has a value for each row attribute. A table attribute is similar to a static data member,
there is only one value of each table attribute for the entire table. This can be viewed as
an optimization: each table attribute is considered an attribute of the object represented
by each row in the table, but the value of the table attribute is the same for all rows, so

Part Space David M. Butler

Release 1.1 15 of 16 2/19/2013

there is no need to store it repeatedly. We'll see an application of table attributes in the
companion tutorial Part Spaces for Scientific Computing.

A suitable schema part class is:

class schema_part
{
...string type; // The C++ type, if any, associated with this.
...int size; // The size in bytes of the relation tuple.
...int align; // The alignment requirement of the relation tuple.
 bool is_tbl // True if the part is a table attribute.
}

The schema of this class is the schema for all schema tables, it's the "schema for the
schema". In particular, we've already seen in Figure 14 that schema_part is the schema
for the cell schema table.

By now the recursive pattern is clear: every table has to have another table as its schema.
The schema_part schema table provides the schema for schema tables, but what provides
the schema for the schema_part schema table, the "schema for the schema for the
schema"? Where does it end?

The answer is it ends in the schema_part table. As shown in Figure 15, schema_part is its
own schema, its column graph is its own row graph. This terminates the recursion.
"Schema chasing" can get confusing, but at least it ends somewhere!

type size align

schema_part

type
size

align
schema_part

string 8 8
int 8 8

int 8 8
schema_part 48 8

is_tbl
false
false

false
false

static bool 1 1 false

Figure 15: schema_part_schema table

4.3 Other special tables

There are two other special tables in a sheaf data base. The primitives table is a special
schema table that describes the memory requirements for each primitive type supported
by the system. A simplified version is shown in Figure 16. Finally, the namespace table is

Part Space David M. Butler

Release 1.1 16 of 16 2/19/2013

a table of contents for a sheaf data base. It contains a basic part for each other table in the
data base.

type size align

schema_part

int
bool

CString
double

int 8
bool 1

double 8
char* 8

8
1
8
8

is_tbl
false
false
false
false

Figure 16: Simple primitives table

5 Summary

We've described the fundamental concepts of the sheaf data model using the (mostly)
non-mathematical notions of parts and part space. The examples have hopefully shown
that the sheaf data model provides a unified conceptual framework for representing a
variety of different data types. But the unification has come at some cost in complexity.
We have sheaf tables instead of simple relational tables and we have the recursive
schema relationships between the tables. Why bother?

The reason is that the sheaf data model provides a unified framework for representing,
storing, and manipulating all the data types common in scientific computing:

• spatial structures,
• physical properties, and especially
• fields.

The next step is to describe how the sheaf data model is applied to each of these
categories, which we do in the companion document Part Spaces For Scientific
Computing.

1 see "The Sheaf Data Model, Part 1: Objects", online at
http://www.limitpoint.com/images/Publications/The%20Sheaf%20Data%20Model.pdf.

2 This definition of subtype is opposite of the definition frequently used in object-
oriented languages, where a derived class is usually called a subtype of the inherited
class. However the definition given here is the natural one for part space schema. It has
the desirable property that restricting an object to a subtype yields a subobject. The usual
object-oriented definition associates a subobject with a super type.

http://www.limitpoint.com/images/Publications/The%20Sheaf%20Data%20Model.pdf

	1 Introduction
	2 Parts and part spaces
	2.1 Basic parts and composite parts
	2.1.1 Vertex example
	2.1.2 Line segment example

	2.2 Organizing part space
	2.3 Basic parts and composite parts revisited
	2.4 Part space in practice

	3 Part spaces for specific types.
	3.1 Data persistence
	3.2 The part space approach to persistence
	3.3 General method and interpretation

	4 The sheaf data model
	4.1 Sheaf tables
	4.2 Schema tables
	4.3 Other special tables

	5 Summary

