The visualization management system approach
to visualization in scientific computing

D. M. Butler

Limit Point Systems, 39120 Argonaut Way, Suite 397, Fremont, California 94538

M. H. Pendley

Sandia National Laboratories, Livermore, California 94551-0969
(Received 3 October 1988; accepted 29 December 1988)

This paper introduces the visualization management system (ViMS), a new approach to the
development of software for visualization in scientific computing (ViSC). The conceptual
foundation for a ViMS is an abstract visualization model that specifies a class of geometric
objects, the graphic representations of the objects, and the operations on both. A ViMS
implements a visualization model and provides four levels of mechanisms for developing
applications. The ViMS requirements and a model-independent ViMS architecture are
described. The ViMS approach presents several important opportunities for visualization

standards.

INTRODUCTION

In this paper, we introduce the visualization management
system (ViMS), a new approach to software for visualiza-
tion in scientific computing (ViSC). As an emerging field
of research, visualization in scientific computing has been
the focus of much attention recently. In particular, the
Panel Report on Visualization in Scientific Computing' de-
scribed the dilemma of current, nonvisual computing prac-
tice: the need to deal with too much data, the need to com-
municate visual information, and the need to interact with
calculations in progress. The Panel Report emphasized the
development of greatly enhanced visualization facilities as
asolution to these problems and proposed the development
of advanced “‘visualization environments.”

A visualization management system is such an envi-
ronment. It is an abstraction of data structures and func-
tions common to many ViSC applications. It is a general-
ized, application-independent facility for the definition,
analysis, and presentation of visual representations of sci-
entific data. In this paper, we introduce and develop the
visualization management system approach. The paper is
organized as follows. In Sec. I, we introduce and motivate
the general notion of a visualization management system
and its conceptual basis, the visualization model. In Sec. 11,
we discuss the requirements a ViMS must satisfy and in
Sec. I1I, we use them to develop a ViMS architecture. In
Sec. IV, we summarize the requirements for the visualiza-
tion model. In Sec. V, we conclude by discussing the bene-
fits of the ViMS approach and its relationship to visualiza-
tion standards.

I. ViMS APPROACH

The design of visualization environments is an open re-
search question that is best approached in the larger con-
text of systems for processing scientific data. A systems ap-
proach emphasizes the overall productivity of the entire
scientific computing environment. It ensures that the visu-

40 COMPUTERS IN PHYSICS, SEP/OCT 1989

alization facilities are smoothly integrated with other com-
puting facilities and that the productivity of both users and
developers is optimized. While the systems approach has
not been emphasized in scientific data processing, it has
dominated business data processing, where the productiv-
ity of the computing environment receives a great deal of
attention. The problems faced in business data processing,
although different in detail from those of scientific data
processing, are the same in general: controlling and inter-
preting large amounts of data, while optimizing both pro-
grammer and user productivity. Hence it is useful to exam-
ine business data processing systems as a guide to
developing systems for processing scientific data.

An outstanding feature of business systems is the cen-
tral role played by database management systems
(DBMS). Most business systems are designed and imple-
mented around commercially available, application-inde-
pendent database management systems. The database
management system can be considered an abstraction of
those data structures and functions common to many busi-
ness applications. These generalized, application-indepen-
dent data structures and functions facilitate the definition,
storage, retrieval, and analysis of (business) data.

Two features common to most modern DBMS’s are
worth emphasizing.

First, the conceptual foundation of a DBMS is a data
model. A data model is an abstract specification of a collec-
tion of data types, a collection of operations on the types,
and a collection of constraints specifying the valid states of
instances of the types. The best known example is the rela-
tional data model; other well-known models include the
hierarchical model and the network model. A DBMS is a
constellation of facilities that implements the data model.

Second, a DBMS usually provides four levels at which
it can be specialized to a particular application. First, there
are low-level mechanisms for optimizing, modifying, or ex-
tending internals of the system. Second, there are middle-
level components, subroutine libraries, that can be embed-

ded in application software. Third, there are high-level
tools, such as interactive report generators and query lan-
guages, that can be configured to an application’s needs.
Fourth, some or all of these facilities are integrated with the
facilities of a general-purpose programming language to
produce a “fourth generation” language, a very high-level
language specialized for solving problems stated in terms of
the data model. With these features, the modern DBMS is a
general, flexible, and productive environment for solving
problems in business data processing.

Similarly, a visualization management system is an
abstraction of data structures and functions common to
many ViSC applications. These abstract, application-inde-
pendent data structures and functions facilitate the defini-
tion, analysis, and presentation of visual representations of
scientific data. The conceptual foundation of a ViMS is a
visualization model that specifies a class of geometric ob-
jects, their graphic representations, and their operations.
As with database management systems, a visualization
management system is an implementation of the model and
the implementation provides four levels at which the model
can be specialized to the application: extendable internals,
embeddable components, configurable tools, and a very
high-level language.

II. ViMS REQUIREMENTS

The analogy with DBMS has helped us define the general
conceptual structure and implementation of a visualization
management system, but the unique requirements of scien-
tific visualization determine its architecture and features.
In this section, we develop specific VIMS requirements:
application independence, integrated visualization and
computation, flexible geometric representation, flexible
graphic representation, data representation independence,
flexible distribution, and host independence. Wherever
possible, we connect these requirements to the perceived
limitations of existing systems. Our discussion is necessar-
ily brief; many of these requirements are described in more
detail in the Panel Report. We discuss the requirements
starting with the more general and abstract and proceeding
to the more concrete and implementation oriented.

A. Application independence

To be generally useful and justify the effort required to
develop it, a ViMS must be application independent. Ap-
plication independence encourages using existing software
for new applications. Since it is the nature of scientific com-
puting that every application is new, software development
overhead is the major barrier to the routine use of visualiza-
tion techniques. Application independence removes this
barrier.

In contrast, existing systems have typically been de-
veloped for specific applications, and, as a result, are suit-
able only for their original application. Many scientists use
visualization techniques rarely or not at all simply because
the development effort required is unacceptable.

B. Integrated visualization and computation

The function of visualization is to help the scientist explore
relationships in scientific data. Effective exploration re-

quires rapid cycling between visualization and additional
computation, or even visual “‘steering” of the computation.
Integrated visualization and computation facilities encour-
age exploration. In addition, they reduce the effort re-
quired to develop new computational processes, since these
processes can be embedded in the existing visualization fa-
cility.

Existing data processing systems are typically struc-
tured with computational processes separate from inter-
pretive ‘“‘postprocessors,” greatly inhibiting the explora-
tion process. Typically, developing a new computational
process requires developing a new postprocessor.

C. Flexible geometric representation

An essential feature of scientific visualization problems,
not usually present in other visualization fields such as
computer-aided design, is that the data typically have no
unique geometric interpretation. This is due in large part to
the abstract nature of typical scientific models and the use
of sophisticated mathematical formalisms. Data structures
with large numbers of dimensions and complicated topolo-
gies occur frequently, making the data not directly
visualizable. These properties require the visualization
management system to have a flexible, interactive mecha-
nism for associating the data with abstract, multidimen-
sional geometric representations. The geometric represen-
tations must be distinct from the two- or three-dimensional
graphic representations. Flexible geometric representation
encourages exploring different geometric interpretations of
the data, an important aid to understanding the data.

Existing systems typically interpret the data as some
particular combined geometric/graphic structure of di-
mensionality three or less. Changing the representation,
for instance by slicing an object into planes or combining
several curves into a surface, requires reprogramming. In-
flexible geometric representation severely limits the effec-
tiveness of visualization as a technique for understanding
scientific data.

0. Flexible graphic representation

As we just described, the graphic representation and the
geometric representation must be distinct. A given geomet-
ric object may have several graphic representations. For
instance, a real function of two real variables may be repre-
sented as a surface in three dimensions, a contour plot, or a
pseudocolor image. Again, exploring different graphic rep-
resentations of the data is an important aid to understand-
ing the data, and the visualization system must provide a
flexible mechanism for selecting a particular graphic repre-

* sentation.

Current systems typically present a given geometric
structure in only one graphic style. Changing the presenta-
tion often requires reprogramming,.

E. Data representation independence

To achieve maximum generality and to minimize mainte-
nance effort, the ViMS software must be designed to avoid
data representation dependence between the ViMS and the
application or between the various subsystems of the VIMS
itself. In particular, data representation dependence be-

COMPUTERS IN PHYSICS, SEP/OCT 1989 41

tween the geometric representation and the graphic repre-
sentation must be avoided.

Existing systems are typically highly data representa-
tion dependent. A particularly common and frustrating ex-
ample of data representation dependence is file depend-
ence. Current systems typically incorporate file access
directly, utilizing FORTRAN READ’s or WRITE’s and
their associated FORMAT statements throughout the
code as needed. This lack of modularization makes the sys-
tem dependent on the file format of some application. Thus
data representation dependence can generate application
dependence as well. .

F. Flexible distribution

Data, visualization, and computation resources are in-
creasingly distributed across computer networks. To maxi-
mize access to these resources, the various facilities of a
ViMS must be flexibly distributable. Users with entry level
facilities should be able to dispatch computation or graphic
tasks to remote resources; users at large installations
should share sophisticated, high-performance resources.

Existing systems are typically not distributable. Data
transfer and access to resources are major limitations to the
routine use of visualization techniques.

G. Host independence

The advantages of host independence, standards, and the
“open systems”’ approach are recognized throughout the
computing industry. Applied to visualization management
systems, host independence has two particular advantages.
First, host independence minimizes maintenance overhead
associated with hardware or software upgrades. Second,
host independence maximizes the availability of visualiza-
tion functionality. If the functionality is available on a wide
range of hosts, entry barriers based on cost are minimized
and connectivity problems associated with getting the data
to a particular host are avoided.

Current visualization software tends to rely on specif-
ic hardware and software environments; as a result, main-
tenance and access problems dominate its use. For in-
stance, the cost of porting visualization software dependent
on the features of specific display systems can effectively
lock the visualization functionality onto obsolete display
technology. As another example, visualization function-
ality dependent on specific, high-performance hardware is
inaccessible to most users.

Ill. ViMS ARCHITECTURE

As described above, a visualization management system is
an abstraction of data structures and functions common to
many ViSC applications. It is a generalized, application-
independent facility for the definition, analysis, and pre-
sentation of visual representations of scientific data. A
ViMS is an implementation of an abstract visualization
model. The model specifies a class of geometric objects, the
graphic representations of the objects, and the operations
on both. The ViMS requirements identified in Sec. II can be
satisfied in part by choosing an appropriate architecture for
the implementation; the remaining requirements must be
satisfied by choosing an appropriate model. In this section
we develop a model-independent ViMS architecture, iden-

42 COMPUTERS IN PHYSICS, SEP/DCT 1989

USER
ViMS #f Graphics,
Commands VIMS Status
USER
INTERFACE
L GRAPHICS
GEOMETRY TGEOMETHV GRAPHICS ’
l couumosl STATUS COMMANDS 1 oy riri
B e i B
]
(optional) | ,acrRact ABSTRACT
GEOMETRIC GEOMETRIC
DATA DATA
EXTERNAL
APPLICATION
DATA

FIG. 1. A model-independent ViMS architecture.

tify the requirements it satisfies, and identify the remaining
requirements that the visualization model must satisfy.

To implement the visualization model, the ViMS ar-
chitecture must provide an agent to implement the geomet-
ric objects, an agent to implement the graphic representa-
tions, and an agent to invoke and control the operations.
This architecture is depicted in Fig. 1. Also shown is an
optional entity for interfacing to external applications, the
application agent. We describe the features of this design
by reviewing it with respect to each of the requirements
discussed above.

A. Application independence

The application agent provides an interface to external ap-
plications, abstracting geometric data from the application
format and allowing the rest of the system to be application
independent. The application agent itself is application de-
pendent.

Except for the architectural support supplied by the
application agent, the application independence of the sys-
tem is determined by the visualization model; if we choose
a model with a very limited class of geometric objects, ori-
ented to a specific application, we have an application-de-
pendent ViMS. Thus the visualization model is required to
provide a class of geometric objects suitable for a wide
range of applications.

B. Integrated visualization and computation

The architecture provides integrated visualization and
computation within the context of the visualization model.
Operations on the geometric objects are distinct from oper-
ations on the graphic representations, but the two types can
be freely and interactively mixed. Any computational pro-
cesses that can be defined in terms of the geometric objects
can be embedded in the system and take full advantage of
its facilities. The geometric objects of the visualization
model must be chosen to provide useful and widely applica-
ble computational operations.

C. Flexible geometric representation

The geometry agent implements the class of geometric ob-
jects defined by the visualization model. The major func-
tion of the geometry agent is to construct instances of this
class using data acquired from the application, following

commands from the user. The term “‘agent” emphasizes
the high degree of control the architecture provides the
user. The user interface subsystem and four-level imple-
mentation can provide the user with interactive or pro-
grammed geometric object construction. The architecture
thus provides flexible geometric representation within the
class of geometric objects defined by the visualization mod-
el. To match the properties of scientific data, the model
must support multiple dimensions and complex topologies.

D. Flexible graphic representation

The geometry agent and the graphics agent are separate
subsystems, hence the graphic representation can be con-
structed and maintained independently of the geometric
object. For each geometric object type, the graphics agent
implements the set of graphic representations defined by
the visualization model. The model must provide a flexible
and complete set of graphic representations.

E. Data representation independence

Modern software engineering emphasizes the use of ab-
stract data types to avoid representation dependence. An
abstract data type provides a data structure and a collec-
tion of operations which encapsulate the data structure,
protecting it from clients of the data type. The operations
allow the data to be manipulated only in conformance with
the specification of the data type. Systems developed using
abstract data types tend to consist of collections of data
types organized into layers, interacting at precisely defined
interfaces.

We assume that the geometry agent, the graphics
agent, the user interface, and the various subcomponents of
all three are implemented as abstract data types, minimiz-
ing data representation dependence between them. Again,
the success of this approach depends on the visualization
model. The interfaces between the geometry agent and the
application and graphics agents are defined in terms of the
geometry. Flexible, efficient interaction between these
agents requires the geometric objects defined by the visual-
ization model to provide general, multilevel access to the
geometric information.

F. Flexible distribution

The components of the system are loosely coupled and
communicate with each other through a message passing
mechanism. This allows the possibility of distributing the
system in a variety of ways. Some of the more important
distributions are the following.

(1) The application agent is remote while the remain-
ing components are local. This is advantageous when the
application file is very large, but only a small portion of it is
visualized at one time. Only the objects viewed need be
shipped across the network.

(2) The application agent and the geometry agent (or
some portion of it) are remote and the remaining compo-
nents are local. This distribution is useful for operations
that are compute intensive or require large input data sets
but produce relatively smaller output data sets. Only the
smaller output data sets need be shipped across the
network.

(3) Subcomponents of the graphics agent, such as
compute-intensive rendering algorithms, are remote while
the rest of the system is local. This distribution allows shar-
ing of special-purpose rendering hardware.

(4) The user interface is local and the rest of the sys-
tem is remote. This distribution provides full functionality
to users with entry level facilities.

G. Host independence

Host independence is largely an implementation issue,
rather than an architectural issue. Recently developed and
evolving formal and de facto standards for operating sys-
tems, programming languages, windowing systems, and
graphics can be used to provide host independence.

IV. VISUALIZATION MODEL REQUIREMENTS

In Sec. III, we reviewed each ViMS requirement, identify-
ing those satisfied by the model-independent architecture
and those remaining to be satisfied by the visvalization
model. For clarity and future reference, we recapitulate the
visualization model requirements here.

(1) Application independence: the visualization mod-
el must provide a class of geometric objects suitable for a
wide range of applications.

(2) Integrated visualization and computation: the ge-
ometric objects of the visualization model must provide
useful and widely applicable computational operations.

(3) Flexible geometric representation: the geometric
objects must support multiple dimensions and complex to-
pologies.

(4) Flexible graphic representation: the model must
provide a flexible and complete set of graphic representa-
tions.

(5) Data representation independence: the geometric
objects defined by the visualization model must provide
general, multilevel access to the geometric information.

The overall efficacy of a ViMS is largely determined
by the generality, flexibility, and expressive power of the
visualization model. Indeed, the feasibility of the entire ap-
proach relies on finding a visualization model which meets
the rather stringent requirements we have listed here. In a
companion article,”> we describe a specific visualization
model, based on the mathematics of fiber bundles, that sat-
isfies these requirements.

V. POTENTIAL BENEFITS OF THE ViMS APPROACH

To conclude, we discuss the potential of the ViMS ap-
proach. Central to the ViMS approach is the emphasis on
the formal visualization model, which in effect provides a
reference model for scientific visualization. The visualiza-
tion model and the interfaces in the VIMS architecture pro-
vide several opportunities for standardization.

At the interface between the application agent and the
geometry agent there exists the potential for a standard
application interface. The principle strategy of this stan-
dard would be to abstract from the application data the
information required by the geometry. This approach is
similar in spirit to the use of device drivers in operating
systems or the Computer Graphics Virtual Device Inter-

COMPUTERS IN PHYSICS, SEP/OCT 1989 43

face standard.’ In practice, any application could gain ac-
cess to the full ViMS functionality by writing a ““file driver”
meeting the requirements of the standard. This type of in-

terface has already been used successfully in at least one

organization.*

The interface between the geometry agent and the
graphics agent provides another important opportunity for
standardization. The existence of a standard, data-repre-
sentation-independent interface between the geometry and
graphics agents would greatly facilitate the development
and dissemination of new functions in both.

A third, and extremely important, standardization
opportunity generated by the abstract visualization model
is at the user interface. The emphasis on a formal, abstract
model frees the user from the details of the data representa-
tion and presents a uniform paradigm across a wide spec-
trum of tools and applications. Returning to the analogy
with database management systems, one of the original
motivations for the relational data model, and a major con-
tributor to its wide acceptance, is that it presents the user
with an abstract interface free from concerns with imple-
mentation details and suitable for standardization. Indeed,
the relational data model has led to a standard database
query language, the recently established ANSI SQL stan-
dard.®

A final, and probably most fundamental, standardiza-
tion opportunity arises because a formal visualization mod-
el generates a taxonomy of visualization. It defines and
classifies the geometric objects and their visual representa-
tions. A formal taxonomy introduces the potential for the
standardization, in the sense of calibration, of visualization
itself. If computer visualization is to realize its full potential
as a research tool, the techniques must be precisely under-
stood and communicated. Visualization cannot just pro-
duce compelling, aesthetically pleasing pictures; it must
produce well-defined pictures. This need has been recog-

44 COMPUTERS IN PHYSICS, SEP/OCT 1389

nized in medical imaging, where visualizations such as
CAT scans are defined by published protocols for acquir-
ing, processing, and displaying the data and calibrated by
standard intensity scales. In contrast, a precise, quantita-
tive understanding of a scientific visualization can current-
ly be obtained only by detailed inspection of the code pro-
ducing it, a painful and unreliable process at best. A formal
taxonomy provides the basis for establishing and commu-
nicating the definition of a visualization.

We close by returning to the analogy with database
management systems. In business data processing, the da-
tabase management system has generated a wealth of host-
independent, increasingly standardized and productive
software environments supported by an extensive theoreti-
cal foundation. We hope the visualization management
system approach will have the same success in scientific
data processing.

ACKNOWLEDGMENTS

We would like to thank Joe Harris and Stewart Keeton for
helpful comments on a first draft of this article.

This work was supported by the United States Depart-
ment of Energy under Contract No. DE-ACO4-
76DP00789.

REFERENGES

1. B. H. McCormick, T. A. Defanti, and M. D. Brown, Comput. Graphics 21, 1
(1987).

2. D. M. Butler and M. H. Pendley, Comput. Phys. 3(5), 45 (1989).

3. T. Powers, A. Frankel, and D. Arnold, IEEE Comput. Graphics Appl. 6, 33
(1986).

4. L. A. Treinish and M. L. Gough, 4 Software Package for the Data-Independent
Manag t of Multidi ! Data (National Space Science Data Center,
NASA Goddard Space Flight Center, Greenbelt, MD, 1987).

5.C.J. Date, 4 Guide to the SQL Standard (Addison—Wesley, Reading, MA, 1987).

