A Brief History Of The Sheaf Data Model

David M. Butler Limit Point Systems, Inc.

Outline

- objective
- Limit Point Systems, Inc. (LPS)
- data model paradigm
- relational data model
- Sandia National Labs 1987-1989
- fiber bundle data model
- Advanced Strategic Computing Initiative (ASCI) 1998-2003
- sheaf data model

Objective

- use historical narrative to
 - introduce Limit Point Systems
 - introduce basic concepts of sheaf data model

Limit Point Systems, Inc. (LPS)

- consulting and contract software development organization
 - founded 1985
 - 6 employees (3 PhD, 2 BS, 1 AA)
- corporate focus
 - integration of scientific computing into industrial workflows
 - "systems for processing scientific data"
- customers in a wide range of industries
 - oil and gas
 - medical imaging
 - manufacturing
 - defense

→key to successful system development is the data model
 →data model R&D an on-going interest at LPS

Data Model Paradigm

- data model is a "theory of data"
- data model specifies
 - class of mathematical objects
 - operations on those objects
 - constraints valid instances have to satisfy
- languages, libraries, tools based on data model
- applications are developed on top of tools

→best known example is relational data model

Relational Data Model

• E.F. Codd, Comm. of the ACM, 1970

"A Relational Model for Large Shared Data Banks"

- objects
 - relations on sets
 - table metaphor

 $A = \{a_1, a_2, ..., a_m\} \\ B = \{b_1, b_2, ..., b_n\}$

- operations
 - relational algebra & calculus
 - select rows
 - project columns
 - join tables
 - etc.

→revolutionized business data management

Revolutionized Business Data Management

- enabled much more sophisticated interaction with data
 interactive queries using SQL
- enabled data sharing between diverse applications
 SQL became "intergalactic dataspeak"
- success as integration platform enabled by mathematics
 objects of data model are mathematical abstractions
 shared by many business applications

→did not revolutionize scientific data management

Did Not Revolutionize Scientific Data Management

- scientific data is overwhelmingly (physics) field data
- relational model doesn't support field data very well
- relational model not used for field data

Scientific Data Is Overwhelmingly (Physics) Field Data

- physics field is a function of several variables
 F(r)
- independent variables are coordinates in some space and/or time

• *r* = (t) or (x, y) or (u,v,w) or ...

- dependent variable is some physical property
 - porosity (scalar): F(r) = s(r)
 - flow rate (vector): $\mathbf{F}(\mathbf{r}) = (v_x(\mathbf{r}), v_y(\mathbf{r}), v_z(\mathbf{r}))$
 - stress (tensor): $\mathbf{F}(\mathbf{r}) = (t_{xx}(\mathbf{r}), t_{xy}(\mathbf{r}), ...)$

Relational Model Doesn't Support Field Data Very Well

doesn't support how we want to use field data

- want to add, subtract, differentiate, visualize
- table operations are too low level

doesn't support how we want to store field data

- technicalities prevent simple table interpretation
- efficiency issues as well

→relational model typically not used for field data

Relational Model Not Used For Field Data

- scientific computing community focused on file formats
- first generation were just ad hoc files with FORMAT statement
- next generation encapsulated format in APIs
- later generations attempted to extend scope of integration

Next Generation Encapsulated Format In APIs

- CDF (Common Data Format) NASA Goddard
 computational fluid dynamics grids
- net CDF (network CDF) NCAR
 - CDF with distributed computing extensions
- Exodus (Sandia)
 - finite element meshes
- vendor specific formats in oil & gas industry
- many others

→created islands of integration around a given mesh type

Later Generations Attempted To Extend Scope Of Integration

- support multiple mesh types
- HDF (U of Illinois/NCSA)
 - generalized external arrays
- Sampled Data type (Open Spirit)
 various oil & gas mesh types
- islands of integration became "archipelagos"

but lesson learned repeatedly ...

→integration based on file formats fails

Integration Based On File Formats Fails

integration depends on shared abstractions

mathematical model is what's shared

file format generalizes mesh types
 mesh types are what's not shared

→the right data model for fields is mathematical

Sandia National Labs 1987-1989

- visualization just emerging as important computational tool
- visualization applications particularly sensitive to data model
- Sandia National Labs, CA
 - just beginning to implement visualization tools
 - asked LPS for data model proposal

Fiber Bundle Data Model

• D. M. Butler & M. H. Pendley, Computers in Physics, 1989

"A Visualization Model Based on the Mathematics of Fiber Bundles"

- recall two problems with relational model for fields
 - doesn't describe how we want to use data
 - doesn't describe how we store data
- fiber bundle model focused on how we want to use data
- objects are sections of fiber bundles
- operations on sections

Objects Are Sections Of Fiber Bundles

- modern mathematical formalism for fields
- reformulation of notion of function
- main benefits

Reformulation Of Notion Of Function

- reformulate *F*(*r*) to emphasize geometry and topology
- focus on spaces instead of variables

base space = well fiber = R^1 bundle = well x R^1 section \subset well x R

Main Benefits

- more general than function
- explicitly identifies structure
- emphasizes topology

→ supports problems with complex topology

Operations On Sections

- algebra
 - add, subtract, scale sections
- calculus
 - integrate and differentiate sections
- visualization
 - visualize section vs section
- number of other useful operations

→describes how we want to use field data

Very Well Received

- heralded as "break through" by reviewers
- several groups built systems based on it
 IBM Data Explorer product
- benefits
 - very broad coverage, any sort of field
 - good description of large scale structure of a field
 - operations fit how we want to use the data

→adopted as starting point for ASCI data model

Advanced Strategic Computing Initiative (ASCI) 1998-2003

- US Department of Energy
- 5 year program to advance state of the art of HPC
- led by US National Labs
- participation by other labs, academia

→ Data Models and Formats (DMF) effort

Data Models And Formats (DMF) Effort

• core participants

- Lawrence Livermore National Lab
- Los Alamos National Lab
- Sandia
- LPS

input and review from other labs, academia

charter

- analyze data representation requirements
 - high performance computing in general
 - DOE complex in particular
- identify data model for complex-wide data integration
- implement software to support model

began with extensive requirements gathering and analysis
 limitations of fiber bundle model

Began With Extensive Requirements Gathering And Analysis

- started with fiber bundle data model
- iterated for over a year at all three labs
 - review model capabilities with stakeholders
 - elicit additional requirements
 - analyze requirements
 - revise model as needed

→identified critical limitations of fiber bundle model

Limitations Of Fiber Bundle Model

- base space issues
- fiber space issues
- technical mathematical issues

→combinatorial explosion of ad hoc extensions

Base Space Issues

- discretization issues
- part hierarchy issues
- parallelization issues

Discretization Issues

- zoo of different mesh types
- adaptive mesh refinement of particular interest
- no obvious, natural support for describing decomposition of base space into cells in mesh

Part Hierarchy Issues

- assembly structures (solid dynamics, mechanics)
- material structures (fluid dynamics, climate models)
- political and geographic structures
- multiple, concurrent part hierarchies
- no obvious, natural support for describing decomposition of base space into parts

Parallelization Issues

- multiple concurrent domain decompositions
 - different decompositions for different platforms
- dynamic decompositions
 - Ioad balancing
 - adaptive mesh refinement
- no obvious natural support for describing domain decomposition

Fiber Space Issues

- users required arbitrary client-defined fiber types
- no obvious, natural support for describing decomposition of client-defined objects into primitive data members for storage

Combinatorial Explosion Of Ad Hoc Extensions

- ad hoc extensions got out of control
- fundamental problem
 - fiber bundle data model describes interface
 - how we want to use the data
 - doesn't describe the representation
 - decomposition of objects into primitive data
 - "data" model doesn't describe the data!

→needed mechanism for describing decomposition

Needed Mechanism For Describing Decomposition

LPS had already explored use of poset/lattice theory
 informal "subset inclusion lattice" for assembly structures

→decided take lattice theory seriously

Decided Take Lattice Theory Seriously

describe everything as a poset, including discretization

support sections of arbitrary fiber types over lattices
 sheaf theory

Sheaf Data Model

- D. M. Butler, U.S. Patent 6,917,943 B2, 2005
 "Sheaf Data Model"
- sheaf data model focuses on how to store the data
 decomposition of complex objects into primitive data
- objects of the sheaf model
- operations of the sheaf model

general system for managing decompositions
 single integrated formalism

Objects Of The Sheaf Model

- sheaves over lattice-ordered relations
- data is logically table structured
 - like relational model
- rows and columns are lattice-ordered
 - represents part hierarchies
- table + graph metaphor

Operations Of The Sheaf Model

- "sheaf algebra" (for want of a better term)
- generalization of relational algebra
 - row and column operations
 - graph operations

General System For Managing Decompositions

→all the way down to the bytes
→general bridge from abstract math to numerical representation
→"intergalactic dataspeak" for field data

Single Integrated Formalism

- traditional relational data
- object-oriented data
- topology/decomposition
- field data

→proven in 10 years of R&D at US national labs and major oil co.

