
The Sheaf Data Model
A rigorous data model for scientific computing

David M. Butler
Limit Point Systems, Inc.

Livermore, CA 94550
d.m.butler@limitpoint.com

Abstract—We summarize the features of the sheaf data model,
a rigorous data model for scientific computing.

Keywords- database management, data models, scientific
computing, high performance computing

I. THE NOTION OF A DATA MODEL
In this paper we introduce the sheaf data model, a

rigorous data model for scientific computing. We use the
term "data model" in the sense originally defined by Codd
[3], that is, a data model consists of a class of mathematical
objects, the operations on the objects, and a set of constraints
on valid instances of the objects. The best known such model
is the relational data model.

II. RELATIONAL DATA MODEL
The objects in the relational model are relations on sets,

the operations are relational algebra, and the constraints are a
fairly complex set of requirements often referred to as
"normalization". The relational data model revolutionized
business data processing in numerous ways. The
mathematics of the model raised the level of abstraction of
applications developed on top of it. Storage specific
procedural queries were replaced by declarative SQL
queries. Application independent tools such as report
generators replaced untold quantities of custom
programming. The relational database management system
became the main tool for integration and interoperation of
diverse sources and formats.

In spite of its success in the business data processing
world, the relational model has never been widely used in
scientific computing. Succinctly put, the model has two
shortcomings for scientific applications: (1) it does not match
the way we want to use the data, the table-oriented
operations of the model are too low level, and (2) it does not
match the way we want to store the data, the normalization
conditions conflict with efficient storage and access.

III. DATA MODELS FOR SCIENTIFIC COMPUTING
Over the last several decades there have been numerous

attempts to find a data model for scientific computing that
would play a role similar to that played by the relational
model in business data processing. One approach to such a
model is to leverage a unique feature of the scientific

domain: unlike business, the scientific domain itself is
already mathematized. We don't need to search for the right
abstractions, science has spent centuries developing them.
We just need to use them.

The fiber bundle model [1] followed this approach. The
objects in the model, taken directly from mathematical
physics, are sections of fiber bundles over topological spaces
while the operations are section algebra and calculus.
Informally, a section of a fiber bundle represents some
property as a function of position in some physical object
and the operations support familiar notions of addition,
subtraction, differentiation, etc.. The mathematical
machinery associated with fiber bundles and topological
spaces provides the generality to deal with a very wide
variety of applications.

The fiber bundle model has been used successfully as the
basis for a number of systems, the best known being the IBM
Data Explorer product, now the OpenDX open source project
[5], and the more recent F5 library [4]. However, extensive
experience with the fiber bundle model in a variety of
settings has shown that while the model does a good job of
addressing how we want to use the data, it does not address
how to store the data. Storage fundamentally requires a
description of how a high level, semantic object is
decomposed into a collection of low level primitives. The
abstractions of the fiber bundle model simply don't address
such decompositions. As a result, implementation of the
model requires ad-hoc extensions and these extensions
inevitably limit the scope of the implementation.

IV. THE SHEAF DATA MODEL
The sheaf data model addresses decomposition at a

fundamental mathematical level. The objects in the model
are sheaves of lattice-ordered relations over lattice-ordered
relations. The mathematical details of the model are
described in [2] but are beyond the scope of this
presentation. Informally, finite distributive lattices ("FDL"s)
and sheaves provide a rigorous formalism for describing,
respectively, parts and the association of attributes with those
parts.

The sheaf data model, like the relational model, can be
described with a table metaphor, as shown in Fig. 1. As with
the relational model, a database is a collection of tables, each
table represents a type, each row represents an instance

Figure 1. Table metaphor for the sheaf data model.

of the type, and the columns represent attributes of the
type.

The rows in the relational model are unordered, but in the
sheaf data model the rows are equipped with a client-defined
lattice order. An FDL can be thought of as representing the
set of all distinct composite parts that can be built from a
given set of basic parts, along with the inclusion
relationships between them. This information can be
represented visually by a directed acyclic graph with two
kinds of nodes, one for basic parts and one for composite
parts, with the links representing "directly includes" (i,e, the
cover relation). The table metaphor for the sheaf model thus
has a graph associated with the rows, with a basic part for
each row in the table, as shown in the figure, where the basic
parts are represented by filled circles. Similarly, the
collection of columns, the schema of the table, is also lattice
ordered, but the lattice order for the schema is specified by
the row order of some other table in the database. Thus
schema are first class objects and each table must have
another table as its schema. This schema recursion
terminates in a special table, the primitives schema table,
which uses its own row order as its schema.

The introduction of schema as first class objects sets up a
dependent type system that can be used to rigorously
represent all the important types of scientific computing. In
particular, tabular types, object-oriented types, spatial types,
and field types can all be represented within the same unified
formalism. We discuss each of these types in the following.

A. Tabular types
Both the rows and the columns are considered unordered

in conventional relational tables. This corresponds the lattice
order being that of a Boolean lattice, represented graphically
by basic parts without any links. The relational model is thus
contained within the sheaf model as a limiting case.

B. Object-oriented types
For object-oriented types, the column order represents

the subobject inclusion order associated with single or
multiple inheritance (base classes) and aggregation (data
members).

Object-oriented types are important in scientific
computing because physical properties are represented by a

collection of mathematical types (scalars, vectors, tensors,
etc.) with a natural object-oriented structure. The sheaf
model supports representation of these properties as
strongly-typed objects rather than collections of attributes
and the schema provides a rigorous connection between the
data and its abstract mathematical specification. The fact that
the schema for these types are first class objects provides a
mechanism for diverse applications to rigorously share such
specifications.

C. Spatial types
Spatial types, and their discrete representation as meshes,

are at the heart of scientific computing. A mesh can be
considered a decomposition of a given spatial domain into a
set of basic parts, namely the mesh primitives such as zones,
faces, edges, or vertices. Every such decomposition,
regardless of the specific primitives used, can be represented
as an FDL [6]. The nodes in the graph represent parts of
space and the links represent spatial inclusion. The FDL
provides a rigorous connection from the concrete numerical
representation through the theory of cellular complexes to
the abstract semantics of the underlying topological space.

The FDL for a mesh is an algebraic representation that
supports a broad set of spatial operations such as union,
intersection, sum, difference, Cartesian product, and tensor
product.

An important feature of the FDL representation is it can
represent multiple, concurrent decompositions in addition to
the mesh: domain decomposition for parallel processing,
parts decomposition for design, decomposition based on the
value of some property, geographical or political region
decomposition, multiple mesh refinements, and/or any ad
hoc client-defined decomposition. Any combination of
decompositions can be created at execution time using the
lattice operations and without being "designed-in" to the
software.

D. Field types
The sheaf data model introduces a rigorous notion of

schema for field types. Informally, a field is a map from
some spatial type to some property type. The schema for a
field is given by an algebraic construction involving the
lattice describing the rows of the spatial type and the lattice
describing the columns of the property type. A wide range of
constructions is possible, but in practice the field schema is
typically the lattice tensor product of the spatial lattice and
the property schema lattice. The field schema concretely
describes the field data and provides a rigorous, seamless
bridge from the numerical representation to the abstract
mathematical specification and semantics of the field. The
field schema supports restriction of the field to any part of
the domain or any part of the property, an important feature
for domain decomposition, parallel processing, visualization,
and other applications.

V. FIBER BUNDLE MODEL REVISITED
The objects of the fiber bundle model, sections of fiber

bundles over topological spaces, have a natural description
within the sheaf data model. Hence, the fiber bundle model

b

c

d

e
f

a

2 3 4 5

1

8 9

row
graph

column
graph

can be implemented on top of the sheaf model. The resulting
layered abstractions provide the utility of the fiber bundle
model combined with a complete and detailed description of
storage that addresses the entire scope of scientific data
management.

VI. APPLICATIONS
The sheaf data model is intended to play a role in

scientific data management similar to that of the relational
data model in business data management, providing a higher
level of abstraction, enabling more general tools and
applications, and increasing productivity. Some examples
include:

A. Interoperation of diverse field formats
Tools to address many of the mesh related "data

munging" chores associated with interoperating geometry
and property fields defined on different mesh types can be
specified and implemented entirely within the sheaf
abstractions, without reference to the specific mesh format.
In particular, we have implemented a universal "property
pusher" tool for moving property fields between meshes,
with optional, policy-controlled refinement of the target
mesh to meet accuracy requirements. Interoperating N mesh
types using such mesh-independent tools requires only O(N)
sheaf adapters, not O(N2) format translators, a major
productivity gain.

B. Visualization of diverse field formats
The sheaf objects and operations support the

implementation of format independent visualization
algorithms in a manner analogous to that just described for
data translation. To support M visualization techniques for N
formats, we need to develop only O(M) format independent
visualization routines, not O(N*M) format specific
visualization routines.

C. Effective use of parallel computing
The sheaf concepts facilitate identification and

description of the parallelism inherent in a problem domain
at the conceptual level and provide for the propagation and
refinement of that information into the computational and
persistent data aspects. The concepts and their embodiment
as software facilitate platform independent parallel
implementations of the data manipulation and visualization
algorithms described above and potentially enable
implementation of application and platform independent,
automatic problem decomposition and distribution services.

D. Long-term, archival storage
The model provides a mathematically precise, and

provably general method for schematizing technical data.
Since the schema captures the mathematical semantics of the
data, it does not depend on persistence of the application that
generated the data. Data storage using such schema can be
implemented in a variety of ways that can evolve with the
technology environment.

E. Formal language and/or ontology
The sheaf concepts can be developed into a formal data

definition and manipulation language. Such a "SheafQL"
could play a role similar to the role SQL has played in
increasing programmer productivity and facilitating
application integration in business information systems.
Similarly, the sheaf concepts can potentially be developed
into a formal ontology for semantic web applications. Both
the formal language and the ontology would inherit the
natural expression of parallelism provided by the sheaf
concepts.

VII. CURRENT STATUS
We have implemented the sheaf data model as a C++

class library with bindings for Java and Python, and are
currently developing a C# binding. The library contains an
API for the general sheaf data model and an API for the fiber
bundle data model, implemented on top of the sheaf API.
Both have been extensively optimized to give asymptotic
space and time performance similar to conventional
representations. We have proven the efficacy of the model in
numerous applications, especially within the oil exploration
and production domain. We are currently preparing an open
source release.

VIII. FUTURE WORK
There are numerous interesting research questions

suggested by the model. First and foremost: what is the
query language? Others include: what is the transaction
model, what storage models are appropriate, and what new
applications and tools does the model enable? We invite
others to join us in pursuing these questions.

ACKNOWLEDGEMENT
Original research and development of the sheaf data

model was funded by subcontracts B347785, B515090, and
B560973 of prime contract W-7405-ENG-48 with the
Department of Energy National Nuclear Security
Administration (DOE/NNSA). Ongoing development has
been funded by Shell GameChanger.

REFERENCES
[1] Butler, D.M. and Pendley, M.H. 1989. A visualization model based

on the mathematics of fiber bundles, Computers in Physics. 3, 5
(1989), 45-51.

[2] Butler, D. M. 2012 The Sheaf Data Model. Technical Report, Limit
Point Systems, Inc.,
http://www.limitpoint.com/images/Publications/The%20Sheaf%20Da
ta%20Model.pdf.

[3] E. F. Codd. 1970. A relational model of data for large shared data
banks. Commun. ACM 13, 6 (June 1970), 377-387.
DOI=10.1145/362384.362685
http://doi.acm.org/10.1145/362384.362685

[4] Fiber Bundle HDF5 Library, http://sciviz.cct.lsu.edu/projects/F5
[5] OpenDX, www.opendx.org
[6] Shapiro, V 1997. Maintenance of geometric representations through

space decompositions. Int. J. of Comp. Geometry & Applications, 7,
1 & 2 (1997) 21-56.

	I. The notion of a data model
	II. Relational data model
	III. Data models for scientific computing
	IV. The sheaf data model
	A. Tabular types
	B. Object-oriented types
	C. Spatial types
	D. Field types

	V. Fiber bundle model revisited
	VI. Applications
	A. Interoperation of diverse field formats
	B. Visualization of diverse field formats
	C. Effective use of parallel computing
	D. Long-term, archival storage
	E. Formal language and/or ontology

	VII. Current status
	VIII. Future Work
	Acknowledgement
	References

