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I. THE NOTION OF A DATA MODEL 
In this paper we introduce the sheaf data model, a 

rigorous data model for scientific computing. We use the 
term "data model" in the sense originally defined by Codd 
[3], that is, a data model consists of a class of mathematical 
objects, the operations on the objects, and a set of constraints 
on valid instances of the objects. The best known such model 
is the relational data model. 

II. RELATIONAL DATA MODEL 
The objects in the relational model are relations on sets, 

the operations are relational algebra, and the constraints are a 
fairly complex set of requirements often referred to as 
"normalization". The relational data model revolutionized 
business data processing in numerous ways. The 
mathematics of the model raised the level of abstraction of 
applications developed on top of it. Storage specific 
procedural queries were replaced by declarative SQL 
queries. Application independent tools such as report 
generators replaced untold quantities of custom 
programming. The relational database management system 
became the main tool for integration and interoperation of 
diverse sources and formats. 

In spite of its success in the business data processing 
world, the relational model has never been widely used in 
scientific computing. Succinctly put, the model has two 
shortcomings for scientific applications: (1) it does not match 
the way we want to use the data, the table-oriented 
operations of the model are too low level, and (2) it does not 
match the way we want to store the data, the normalization 
conditions conflict with efficient storage and access. 

III. DATA MODELS FOR SCIENTIFIC COMPUTING 
Over the last several decades there have been numerous 

attempts to find a data model for scientific computing that 
would play a role similar to that played by the relational 
model in business data processing. One approach to such a 
model is to leverage a unique feature of the scientific 

domain: unlike business, the scientific domain itself is 
already mathematized. We don't need to search for the right 
abstractions, science has spent centuries developing them. 
We just need to use them. 

The fiber bundle model [1] followed this approach. The 
objects in the model, taken directly from mathematical 
physics, are sections of fiber bundles over topological spaces 
while the operations are section algebra and calculus. 
Informally, a section of a fiber bundle represents some 
property as a function of position in some physical object 
and the operations support familiar notions of addition, 
subtraction, differentiation, etc.. The mathematical 
machinery associated with fiber bundles and topological 
spaces provides the generality to deal with a very wide 
variety of applications. 

The fiber bundle model has been used successfully as the 
basis for a number of systems, the best known being the IBM 
Data Explorer product, now the OpenDX open source project 
[5], and the more recent F5 library [4]. However, extensive 
experience with the fiber bundle model in a variety of 
settings has shown that while the model does a good job of 
addressing how we want to use the data, it does not address 
how to store the data. Storage fundamentally requires a 
description of how a high level, semantic object is 
decomposed into a collection of low level primitives. The 
abstractions of the fiber bundle model simply don't address 
such decompositions. As a result, implementation of the 
model requires ad-hoc extensions and these extensions 
inevitably limit the scope of the implementation. 

IV. THE SHEAF DATA MODEL 
The sheaf data model addresses decomposition at a 

fundamental mathematical level. The objects in the model 
are sheaves of lattice-ordered relations over lattice-ordered 
relations. The mathematical details of the model are 
described in [2] but are beyond the scope of this 
presentation. Informally, finite distributive lattices ("FDL"s) 
and sheaves provide a rigorous formalism for describing, 
respectively, parts and the association of attributes with those 
parts.  

The sheaf data model, like the relational model, can be 
described with a table metaphor, as shown in Fig. 1. As with 
the relational model, a database is a collection of tables, each 
table represents a type, each row represents an instance 



 
Figure 1.  Table metaphor for the sheaf data model. 

of the type, and the columns represent attributes of the 
type.  

The rows in the relational model are unordered, but in the 
sheaf data model the rows are equipped with a client-defined 
lattice order. An FDL can be thought of as representing the 
set of all distinct composite parts that can be built from a 
given set of basic parts, along with  the inclusion 
relationships between them. This information can be 
represented visually by a directed acyclic graph with two 
kinds of nodes, one for basic parts and one for composite 
parts, with the links representing "directly includes" ( i,e, the 
cover relation). The table metaphor for the sheaf model thus 
has a graph associated with the rows, with a basic part for 
each row in the table, as shown in the figure, where the basic 
parts are represented by filled circles. Similarly, the 
collection of columns, the schema of the table, is also lattice 
ordered, but the lattice order for the schema is specified by 
the row order of some other table in the database. Thus 
schema are first class objects and each table must have 
another table as its schema. This schema recursion 
terminates in a special table, the primitives schema table, 
which uses its own row order as its schema. 

The introduction of schema as first class objects sets up a 
dependent type system that can be used to rigorously 
represent all the important types of scientific computing. In 
particular, tabular types, object-oriented types, spatial types, 
and field types can all be represented within the same unified 
formalism. We discuss each of these types in the following. 

A. Tabular types 
Both the rows and the columns are considered unordered 

in conventional relational tables. This corresponds the lattice 
order being that of a Boolean lattice, represented graphically 
by basic parts without any links. The relational model is thus 
contained within the sheaf model as a limiting case. 

B. Object-oriented types 
For object-oriented types, the column order represents 

the subobject inclusion order associated with single or 
multiple inheritance (base classes) and aggregation (data 
members). 

Object-oriented types are important in scientific 
computing because physical properties are represented by a 

collection of mathematical types (scalars, vectors, tensors, 
etc.) with a natural object-oriented structure. The sheaf 
model supports representation of these properties as 
strongly-typed objects rather than collections of attributes 
and the schema provides a rigorous connection between the 
data and its abstract mathematical specification. The fact that 
the schema for these types are first class objects provides a 
mechanism for diverse applications to rigorously share such 
specifications. 

C. Spatial types 
Spatial types, and their discrete representation as meshes, 

are at the heart of scientific computing. A mesh can be 
considered a decomposition of a given spatial domain into a 
set of basic parts, namely the mesh primitives such as zones, 
faces, edges, or vertices. Every such decomposition, 
regardless of the specific primitives used, can be represented 
as an FDL [6]. The nodes in the graph represent parts of 
space and the links represent spatial inclusion. The FDL 
provides a rigorous connection from the concrete numerical 
representation through the theory of cellular complexes to 
the abstract semantics of the underlying topological space. 

The FDL for a mesh is an algebraic representation that 
supports a broad set of spatial operations such as union, 
intersection, sum, difference, Cartesian product, and tensor 
product. 

An important feature of the FDL representation is it can 
represent multiple, concurrent decompositions in addition to 
the mesh: domain decomposition for parallel processing, 
parts decomposition for design, decomposition based on the 
value of some property, geographical or political region 
decomposition, multiple mesh refinements, and/or any ad 
hoc client-defined decomposition. Any combination of 
decompositions can be created at execution time using the 
lattice operations and without being "designed-in" to the 
software. 

D. Field types 
The sheaf data model introduces a rigorous notion of 

schema for field types. Informally, a field is a map from 
some spatial type to some property type. The schema for a 
field is given by an algebraic construction involving the 
lattice describing the rows of the spatial type and the lattice 
describing the columns of the property type. A wide range of 
constructions is possible, but in practice the field schema is 
typically the lattice tensor product of the spatial lattice and 
the property schema lattice. The field schema concretely 
describes the field data and provides a rigorous, seamless 
bridge from the numerical representation to the abstract 
mathematical specification and semantics of the field. The 
field schema supports restriction of the field to any part of 
the domain or any part of the property, an important feature 
for domain decomposition, parallel processing, visualization, 
and other applications. 

V. FIBER BUNDLE MODEL REVISITED 
The objects of the fiber bundle model, sections of fiber 

bundles over topological spaces, have a natural description 
within the sheaf data model. Hence, the fiber bundle model 
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can be implemented on top of the sheaf model. The resulting 
layered abstractions provide the utility of the fiber bundle 
model combined with a complete and detailed description of 
storage that addresses the entire scope of scientific data 
management. 

VI. APPLICATIONS 
The sheaf data model is intended to play a role in 

scientific data management similar to that of the relational 
data model in business data management, providing a higher 
level of abstraction, enabling more general tools and 
applications, and increasing productivity. Some examples 
include: 

A. Interoperation of diverse field formats 
Tools to address many of the mesh related "data 

munging" chores associated with interoperating geometry 
and property fields defined on different mesh types can be 
specified and implemented entirely within the sheaf 
abstractions, without reference to the specific mesh format. 
In particular, we have implemented a universal "property 
pusher" tool for moving property fields between meshes, 
with optional, policy-controlled refinement of the target 
mesh to meet accuracy requirements. Interoperating N mesh 
types using such mesh-independent tools requires only O(N) 
sheaf adapters, not O(N2) format translators, a major 
productivity gain. 

B. Visualization of diverse field formats 
The sheaf objects and operations support the 

implementation of format independent visualization 
algorithms in a manner analogous to that just described for 
data translation. To support M visualization techniques for N 
formats, we need to develop only O(M) format independent 
visualization routines, not O(N*M) format specific 
visualization routines.  

C. Effective use of parallel computing 
The sheaf concepts facilitate identification and 

description of the parallelism inherent in a problem domain 
at the conceptual level and provide for the propagation and 
refinement of that information into the computational and 
persistent data aspects. The concepts and their embodiment 
as software facilitate platform independent parallel 
implementations of the data manipulation and visualization 
algorithms described above and potentially enable 
implementation of application and platform independent, 
automatic problem decomposition and distribution services. 

D. Long-term, archival storage 
The model provides a mathematically precise, and 

provably general method for schematizing technical data. 
Since the schema captures the mathematical semantics of the 
data, it does not depend on persistence of the application that 
generated the data. Data storage using such schema can be 
implemented in a variety of ways that can evolve with the 
technology environment. 

E. Formal language and/or ontology 
The sheaf concepts can be developed into a formal data 

definition and manipulation language. Such a "SheafQL" 
could play a role similar to the role SQL has played in 
increasing programmer productivity and facilitating 
application integration in business information systems. 
Similarly, the sheaf concepts can potentially be developed 
into a formal ontology for semantic web applications. Both 
the formal language and the ontology would inherit the 
natural expression of parallelism provided by the sheaf 
concepts. 

VII. CURRENT STATUS 
We have implemented the sheaf data model as a C++ 

class library with bindings for Java and Python, and are 
currently developing a C# binding. The library contains an 
API for the general sheaf data model and an API for the fiber 
bundle data model, implemented on top of the sheaf API. 
Both have been extensively optimized to give asymptotic 
space and time performance similar to conventional 
representations. We have proven the efficacy of the model in 
numerous applications, especially within the oil exploration 
and production domain. We are currently preparing an open 
source release. 

VIII. FUTURE WORK 
There are numerous interesting research questions 

suggested by the model. First and foremost: what is the 
query language? Others include: what is the transaction 
model, what storage models are appropriate, and what new 
applications and tools does the model enable? We invite 
others to join us in pursuing these questions. 
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