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1 The notion of a data model 

A data model is a theory describing computer data. The term was introduced by E.F. 
Codd in the early 1970's to describe the relationship between previous approaches to data 
management and the relational data model which he had just introduced. Formally, a data 
model specifies three things: 

• a class of mathematical objects which are used to model data 
• the operations on those objects 
• the constraints between the objects that must be satisfied in a valid database 

The purpose of a data model is to serve as a basis for analysis, design, and 
implementation of database management systems (DBMS). That is, a DBMS will 
implement in software (or sometimes in hardware) the operations of the model which will 
allow clients of the system to store and manipulate their data as instances of the objects of 
the model. 

2 The relational data model 

The best known and by far the most successful data model is the relational data model. 
Currently all major DBMS's (Oracle, Informix, Sysbase, ...) are based on some form of 
the relational model. To the commercial data management industry, data management is 
essentially indistinguishable from relational database management system (RDBMS) 
technology. 

In the relational data model, the mathematical objects are relations on domains and the 
operations are given by the relational algebra. The terms relation, domain, and relational 
algebra have detailed, rigorous definitions in mathematics and we will need to understand 
these concepts in order to understand the relational model and its limitations. However, 
we can avoid the mathematical details by using the table analogy that is widely used in 
the practical database world. 

2.1 Objects in the relational data model 

A mathematical set is any collection of objects, entities, or anything else we wish to think 
about. A domain is a set of values that can be directly represented on the computer, in 
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other words a computer data type. Three very common domains are integer numbers, real 
numbers, and character strings. In the table picture, a domain is a table with a single 
column that lists all possible values in the domain, as in Figure 1. The name of the 
domain is the heading for the column. We've chosen the number of values in this domain 
to be very small in order to make the table easy to draw, in practice the number of values 
would be much larger. 

 
TINY_INT 
0 
1 
2 

Figure 1: A very small domain in table form. 

The binary Cartesian product, A × B, of two sets A and B is a set which contains all 
possible pairs (a,b), where a is a member of A and b is a member of B. In the table 
picture, it is a table with two columns, one for A and one for B, as in Figure 2. This table 
shows the Cartesian product of the domain TINY_INT with itself. Each row in this table 
contains a pair of values and hence corresponds to a member of the product set. Each 
column corresponds to one of the factors in the product. 

 
TINY_INT × TINY_INT 

TINY_INT TINY_INT 
0 0 
0 1 
0 2 
1 0 
1 1 
1 2 
2 0 
2 1 
2 2 

Figure 2: The Cartesian product TINY_INT × TINY_INT in table form. 

The notion of Cartesian product can be extended to more than just two factors. The n-ary 
Cartesian product A × B × C × … (n factor sets) is a table with n columns, one for each 
factor. Each row contains n values, one from each one of the factors and there is a row in 
the table for each possible combination of values. Each row is called an n-tuple and the n-
ary Cartesian product is the set of all such n-tuples. 



SDM Context and Overview  David M. Butler 

Release 1.2 3 of 30 10/1/2012 
 © 2012 Limit Point Systems, Inc. 

A relation is a subset of a Cartesian product set. It can be viewed as a table with the same 
column headings as the Cartesian product it is a subset of, but only some of the rows. It is 
called a relation because we can select the subset to represent all those pairs that satisfy 
some relationship between the two columns. For instance, in Figure 3, we show the 
relation LESS_THAN_OR_EQUAL: 

 
LESS_THAN_OR_EQUAL 
TINY_INT TINY_INT 
0 0 
0 1 
0 2 
1 1 
1 2 
2 2 

Figure 3: The relation LESS_THAN_OR_EQUAL in table form. 

A relation schema or relation type is the list of column headings for the table or, 
equivalently, the list of factors in the Cartesian product which the relation is a subset of. 
There are many different possible subsets of the rows of a given Cartesian product set 
and hence there are many possible relations for a given relation type. When we want to 
emphasize that we a talking about a specific subset of the rows of a given relation type, 
we will use the term relation instance. 

2.2 Representing application data as relations 

2.2.1 Entities and relationships 

Applications are often analyzed for data base purposes using the dual notions of entity 
and relationship. An entity is any thing or object in the real world which is 
distinguishable from all other objects. Entities have attributes. An attribute is a named 
property that takes its value from some domain. An entity is represented by its set of 
attribute values; the attribute values identify the entity and describe its state. A 
relationship is an association between entities. 

When the relational model is used to store application data, the application data is 
typically organized so that a relation represents either an entity in the application or a 
relationship between entities.  

2.2.2 A simple example 

For instance, in a personnel application we might have an EMPLOYEE table and a 
MANAGED_BY table. The EMPLOYEE table , Figure 4, is an entity table. Each row in 
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the table represents an entity (an employee) and the columns in the table represent 
attributes of the entity, for instance employee_id, name, job title, and salary. 

 
EMPLOYEE 

ID NAME TITLE SALARY 
1 John Jones Programmer $100,000 
2 Mary Smith President $120,000 
3 Michael Brown Programmer $80,000 
4 Linda Green Secretary $50,000 

Figure 4: The EMPLOYEE entity relation 

The MANAGED_BY relation, Figure 5, is a relationship relation. Each row in the table 
represents the relationship between two employees, one being the manager of the other. 
The columns in this table contain the ids of the relevant employees. 

 
MANAGED_BY 

WORKER MANAGER 
1 2 
3 2 
4 2 

Figure 5: The MANAGED_BY relationship relation 

2.2.3 The HAS_A relationship 

Since an entity is any thing or object, one can consider an attribute value to be an entity 
itself. For instance, a name can be considered an entity. From this point of view, the 
entity-attribute association can be considered a relationship between two entities, the 
primary entity and the attribute entity. This very fundamental relationship is often called 
the HAS_A relationship. The HAS_A relationship is built into the relational data model; 
it is directly represented by the relationship between a table and its columns. Other 
relationships, such as the MANAGED_BY relationship in the example above, must be 
represented by additional tables. 

2.3 Operations in the relational model 

There are a large number operations that one can perform on relations. These operations 
take one or more relations as input and produce a relation as output. Equivalently, the 
operations take one or more tables as input and produce a table as output. These 
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operations are not all independent of each other, some can be implemented using the 
others. It is customary to pick an independent subset and refer to this fundamental subset 
as the operators of the relational algebra, but there is more than one choice of the 
fundamental subset. For our purposes, the 6 fundamental operators in the relational 
algebra are: 

• Cartesian product 
• selection 
• projection 
• union 
• intersection 
• rename 

We have already described the Cartesian product operator. We will describe each of the 
others in turn, using the table analogy. 

2.3.1 Selection 

The selection operator takes a table and a row selection condition and returns a table 
containing only the rows that match the selection condition. For instance, 

SELECT rows with SALARY >= $100,000 in relation EMPLOYEE 

returns Figure 6. Note that Figure 6 does not have a name. As we'll see below, the rename 
operator allows us to give a table a name. But if the table produced by an operator is just 
a temporary result, to be used only as input to another operator, there is no need for it to 
have a name. 

 
 

ID NAME TITLE SALARY 
1 John Jones Programmer $100,000 
2 Mary Smith President $120,000 

Figure 6: Result of the first selection operator example. 

Another example of selection, which we will use shortly is: 

SELECT rows with TITLE = Programmer in relation EMPLOYEE 

which returns Figure 7. 
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EMPLOYEE 
ID NAME TITLE SALARY 
1 John Jones Programmer $100,000 
3 Michael Brown Programmer $80,000 

Figure 7: Result of the second selection operator example 

2.3.2 Projection 

The projection operator is similar to the selection operator, except it works on columns. 
The project operator takes a table and a list of column names as input and produces a 
table which has only the named columns as output. Since two rows may have differed 
only in one of the columns that was removed, the result may have duplicate rows. If so, 
only one of the duplicate rows is retained, the others are discarded. As an example, 

PROJECT columns named NAME in relation EMPLOYEE 

produces the list (i.e. table) of all the employees names, as shown in Figure 8. 

 
 
NAME 
John Jones 
Mary Smith 
Michael Brown 
Linda Green 

Figure 8: Result of the projection operator example 

2.3.3 Union 

The union operator takes two tables as input and creates as output a table that has all the 
rows that are in either of the input tables. The union operator can only be used on tables 
which both have the same relation type (column headings). As an example, we can 
combine the results of the two select operations above with the following operation: 

UNION relation Figure 6 with relation Figure 7 

which produces Figure 9 as a result.  
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ID NAME TITLE SALARY 
1 John Jones Programmer $100,000 
2 Mary Smith President $120,000 
3 Michael Brown Programmer $80,000 

Figure 9: Result of union operation 

2.3.4 Intersection 

The intersection operator takes two tables as input and creates as output a table 
containing all rows that are in both tables. Like the union operator it can only be used on 
tables which both have the same relation type. So we can also apply the intersection 
operator to Figure 6 and Figure 7 

INTERSECT relation Figure 6 with relation Figure 7 

which produces Figure 10 as a result.  

 
 

ID NAME TITLE SALARY 
1 John Jones Programmer $100,000 

Figure 10: Result of intersection operation 

2.3.5 Rename  

The operators described above all produce nameless tables. If we want to refer to a 
resultant table by name, we have to give it a name. The rename operator does this. 

2.3.6 Other operators 

The set of operators we have described above is a so-called "primitive" set. It is a 
minimal set of operations from which other, more convenient to use operations can be 
built. Practical relational database systems implement a number of other operators which 
we have not described here. 

2.4 Constraints in the relation data model 

A database for a particular application is designed by choosing a set of relation types that 
represent the entities and relationships in the application. This collection of relation types 
is called the database schema. The details of the mathematics of the relation model place 
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a number of constraints on the relation types in the database schema. A database schema 
that satisfies these constraints is said to be in normal form and the process of reshaping a 
candidate database schema design to meet the requirements of normal form is called 
normalization. The net effect of normalization is typically to scatter the attributes of an 
entity across many different tables. 

The constraints of normal form are organized into various stages, first normal form, 
second normal form etc. In this context, we need only deal with first normal form. 

First normal form requires that each column in a table must contain so-called "atomic" 
data. That is, the domain associated with the column must be some predefined, preferably 
fixed size type like an integer. The reason for this is that the relational operations see only 
the table structure and cannot deal with any internal structure associated with the data 
within a given cell in the table.  

The most infamous type of non-atomic data is the array. Frequently, the most natural 
interpretation the application entity is that it has an attribute which is a variable length 
collection. For instance, a natural attribute for an employee might be "skills", a variable 
length array of skill keywords. However, this attribute would constitute a non-atomic 
attribute and hence is forbidden. Typically, the atomic attribute requirement forces the 
creation of additional tables, possibly EMPLOYEE_SKILLS in this case, which would 
cross reference employee entities to skill entities. In many applications this is an entirely 
acceptable approach but sometimes, as we'll see shortly, this is completely infeasible. 

2.5 Impact of the relational model 

The relational data model was a radical departure from previous data management 
approaches in that it was a mathematical model. Previous ad hoc approaches had mostly 
focused on how data was to be stored and described how to access the data in terms of 
how it was stored. This limited the types of queries that could be made and generated 
massive software maintenance problems whenever the data storage was reorganized.  

The relational data model instead described data in terms of abstract mathematical objects 
and operations. The mathematical abstraction separated how data was accessed from how 
it was actually stored. Furthermore, the mathematics ensured that the relational algebra 
was a complete set of query operators, any query within the universe of possible queries 
defined by the model could be generated by a suitable combination of the fundamental 
relational algebra operators. 

The mathematical abstraction and completeness of the relational algebra meant that 
sophisticated query processors could be implemented as independent subsystems, without 
knowledge of the application. This arguably created the database management system as 
a commercial product and unquestionably revolutionized the database industry. 
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3 Limitations of the relational model and the need for other models 

In spite of the overwhelming success of the relational data model, not all application 
areas are well served by the model. In this section we describe three categories of 
applications which are not well served by the relational model and we describe the 
attempts to develop data models that match the requirements of these applications. 

3.1 Spatial data 

There are a wide variety of applications that deal with data that is spatial or geometric in 
nature. Computer aided design and manufacturing (CAD/CAM) and geographic 
information systems (GIS) are two well known, commercially important examples. 

A main focus of systems that deal with spatial data is the need to represent spatial 
decomposition. Design data is organized into systems, subsystems, and parts. 
Geographical data is organized into states, counties, and cities. Furthermore, these 
applications frequently exhibit multiple, concurrent decompositions. For instance, 
geographic systems must represent both natural, physical boundaries and political 
boundaries. 

At finest level of decomposition, spatial data consists of collections of geometric 
primitives and the topological relationships between the primitives. Geometric primitives 
include simple geometric shapes like points, lines, and polygons, as well as a wide and 
constantly growing zoo of mathematically more sophisticated primitives such as non-
rational-uniform-B-splines (NURBS). The topological relationships describe the way 
these geometric patches are connected to form complex structures. 

It has long been understood that the relational model is a poor choice for representing 
spatial data. There are (at least!) two fundamental issues: 

• It is difficult to represent the decomposition relationships, especially the 
topological relationships, in a natural and efficient way. For instance, a polygon 
HAS_A collection of edges which would be naturally represented as an attribute 
of the polygon entity. However, first normal form prohibits such variable length 
collections as attributes. On the other hand, representing the topological 
relationships in separate relationship tables means it requires complex, possibly 
recursive, and frequently inefficient queries to retrieve all the parts of a geometric 
primitive. 

• The operations of the relational algebra are not well suited to natural spatial 
queries such as nearness queries and region queries. 

3.1.1 spatial data models 

In response to these issues, there have been many attempts to extend the relational model 
to support spatial data, or to use other data models to support spatial data. Spatial data 
management is currently an active research topic. 
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3.2 Object-oriented programming 

In the decade following 1985, there was a strong shift in software development practice 
from the older procedural programming style associated with languages such as 
FORTRAN, COBOL, and C to the object-oriented paradigm associated with languages 
such as Smalltalk, C++, and more recently Java. 

The features of the object-oriented paradigm relevant to this discussion can be described 
using the entity-relationship notions introduced above. Object-oriented languages 
facilitate the definition of programmer-defined entity types called classes. Individual 
entities of these entity types are called objects. Complex entities and entity types are 
composed primarily using two relationships: 

• The HAS_A relationship is used to compose simpler objects into more complex 
objects. That is, objects have parts which are other objects. 

• The IS_A relationship is used to combine entity types into more complex types. 

The IS_A relationship, or inheritance as it is called in the object-oriented paradigm, is a 
powerful new technique introduced by the object-oriented paradigm. The IS_A 
relationship is a relationship between entity types, rather than just individual entities. If 
entity type MANAGER is specified to inherit type EMPLOYEE, then the MANAGER 
type IS_A special kind of EMPLOYEE. Every MANAGER entity has all the attributes 
that that every EMPLOYEE entity has, plus any attributes that are specified in type 
MANAGER. This programming mechanism greatly facilitated the construction of 
complex software applications by making it much less labor intensive, and less error 
prone, to model the natural inheritance relationships found in applications. 

In execution, an object-oriented application is a complex network of objects related by 
the HAS_A and IS_A relationships. The natural notion of data storage for such a system 
is the notion of object persistence. One should be able to easily store an object and all the 
objects it refers to in a database, thus making the object persist after the program that 
created it has finished execution. Similarly, one should be able to retrieve the object 
easily when execution resumes. 

Attempts to use the relational model to store object-oriented data suffer one of the same 
difficulties described above for spatial data: complex, recursive HAS_A relationships are 
difficult to implement in the relational model. 

An even more severe problem is that the IS_A relationship cannot be implemented 
directly in the relational model at all. In the context of a relational data base, the IS_A 
relationship is a relationship between relation types. As we saw above, a relation type is 
not a relation, it is just a set of attributes. Thus the relation types as such cannot be 
represented or operated on within the model. 
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3.2.1 The object-oriented data model 

This fact has spurred the development an entirely different data model, the object data 
model, and its corresponding object-oriented database management system (OODBMS) 
technology. The object data model supports complex object composition (HAS_A 
relationships), inheritance (IS_A relationships), and object persistence in the context of 
some general purpose programming language like C++. 

Although references to the "the" object data model are very common, there really isn't an 
object data model in a sense comparable to the relational model. The object model is 
essentially a family of related, ad hoc models, without any substantial industry or 
academic consensus on what "the" model is. The object model has no firm theoretical, 
mathematical basis and there is no set of operations equivalent to the relational algebra on 
which to base a query language. As a result, the definition of a general query language 
remains a problem to this day and OODBMS's tend to be tightly coupled to some general 
purpose object-oriented programming language (e.g. C++). OODBMS technology is 
widely perceived as obsolescent, being replaced by object-relational technology. 

3.2.2 The object-relational data model 

The object-relational data model is the second track of development motivated by the 
object-oriented paradigm. The object-relation model attempts to extend the relational 
model with oriented-oriented concepts derived from the relational formalism itself. The 
first normal form constraint is relaxed by allowing attributes that are themselves instances 
of relations. The object-relational approach retains a mathematical foundation and hence 
supports high-level query languages, extensions of the SQL standard developed from the 
relational model. 

3.3 Numerical simulation and scientific computing 

A third application area for which the relational model is not well suited, and an 
increasingly commercially important one, is numerical simulation or "scientific 
computing". Simulation software is aimed at predicting the outcome of complex physical, 
biological, financial, or other processes by building mathematical models and 
numerically solving the resulting equations. Defense, petroleum exploration, and medical 
imaging have been the classical applications for scientific computing. However, as the 
price of numerical computation has dropped, it has become increasingly cost effective to 
use simulation in a wide range of applications. For instance, it is an accelerating trend in 
manufacturing to replace the conventional design-build-test-redesign product 
development cycle with the so-called "virtual test" or design-simulate-redesign cycle. 
Similarly, financial trading is directed by market simulations and major metropolitan TV 
stations produce their own weather simulations, complete with computer generated 
animations. 

Simulations combine features of spatial data and object-oriented data. The results of the 
simulation usually represent what is refered to in physics as a "field", that is, the 
dependence of some property on space or time. For instance, the result may represent the 
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dependence of mechanical stress on position within the product, or stock price on time, or 
temperature on location. Simulation data thus usually contains embedded spatial data 
representing the shape of the product, the interesting intervals of time, or the geography 
of the region of interest. In addition, the space and time dependent properties being 
computed usually are complex mathematical types with important IS_A relationships 
between them. 

In addition to sharing these features with spatial data and object-oriented data, simulation 
data has another essential feature: the data sets tend to be very large. The amount of data 
that must be processed in a simulation is directly proportional to the desired accuracy. 
The quest for accuracy always requires that the simulations be run at (or over!) the limits 
of the computational resource. 

As with the previous examples, the functionality provided by the relational model does 
not provide a good fit to the requirements of the application domain. The poor fit has 
historically led the scientific programming community to develop their own data models 
and supporting software. 

3.3.1 Ad hoc scientific data models 

The majority of scientific data models have been ad hoc models derived from assumed 
file formats. These are not true explicitly defined data models in the sense described 
above. Instead, the data format and file system has been implemented first, and the data 
model implied by the resulting functionality. Three of the most successful have been 
CDF ("Common Data Format") developed at NASA and its immediate descendant 
netCDF, develop at the National Center for Atmospheric Research, and HDF 
("Hierarchical Data Format"), developed at the National Center for Supercomputing 
Applications at the University of Illinois. 

In additional to these three relatively widely used models, there have been dozens of 
others, used within smaller communities or individual organizations. In particular, each 
of the national labs has developed several such systems. 

3.3.2 The fiber bundle data model 

In 1989 Butler and Pendley published the fiber bundle data model, the first true 
mathematical data model for simulation data. A succinct summary of the fiber bundle 
model is that the mathematical objects are generalized fields called sections of fiber 
bundles and the operations correspond to field algebra, calculus, and visualization. 

There have been several implementations, or partial implementations, of the fiber bundle 
data model. Under contract to Sandia National Labs, LPS implemented the first 
prototype, the ViMS system, and a later more advanced version, the Whitney system. The 
best known implementation, and the only commercial one, is the IBM Data Explorer 
system. 
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Experience with these implementations, and especially the extensive effort starting in 
1998 within the Data Models and Formats project of the Advanced Strategic Computing 
Initiative ("ASCI") funded by the U.S. Department of Energy has exposed critical 
limitations of the fiber bundle model. Specifically, it became clear that although the fiber 
bundle model does a good job of describing the interface to field data, that is, how we 
want to use the data, it does not deal adequately with describing the representation of the 
data, that is, how we store the data. In short, the fiber bundle data model describes the 
field abstraction, but doesn't describe the data! 

4 The sheaf data model 

The sheaf data model is a generalization of the relational data model. Historically, the 
sheaf data model evolved out of the fiber bundle data model in order to remove the 
observed limitations and to provide additional features required by ASCI applications. In 
the current presentation however, we will present the sheaf data model as a generalization 
of the relational data model, in order to clarify the difference between the two models. 

4.1 The importance of inclusion relationships 

The essential insight that leads from the relational model to the sheaf model is to observe 
that the difficulties using the relational model to represent spatial, object-oriented and 
scientific data all originate in the fact the relational model provides no explicit 
mechanism for representing inclusion. There are two distinct types of inclusion we need 
to represent: 

row inclusion: HAS_A relationships, e.g. the decomposition relationships of spatial data 
and the object containment relationships of object-oriented data, correspond to row 
inclusion. For instance an edge entity, represented by a row, is conceptually included in a 
polygon entity represented by another row. 

column inclusion: IS_A relationships, e.g. the inheritance relationship of object-oriented 
data, corresponds to column inclusion. If type MANAGER inherits type EMPLOYEE, 
then a MANAGER table includes all the column headings of an EMPLOYEE table. 

What is needed is a generalization of the relational model that incorporates these two 
types of inclusion. 

4.2 The mathematics of inclusion: partially ordered sets 

The mathematicians have developed an extensive theory of inclusion known as the theory 
of partially ordered sets. A partially ordered set, or poset as it is frequently abbreviated, 
consists of two components: a set of objects, called the base set, and a relation on the 
base set, called the ordering relation. The ordering relation explicitly defines which 
members of the base set are included in each other. 

We can extend the table analogy we used for relations to describe a partially ordered set. 
In the table picture, a poset consists of a table and a graph. The table represents the base 
set and the graph represents the ordering relation. A graph is a diagram that consists of 
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points or "nodes" connected by lines or "links". An example will help make this picture 
clearer. Figure 11 shows a very simple spatial object: a single triangle consisting of three 
vertices, three edges, and the triangle itself, including the space in the interior of the 
triangle. 

6

3

4

5

0

1 2  

Figure 11: A very simple spatial object, labeled with entity IDs 

Figure 12 shows the table picture of the corresponding poset. The table represents the 
base set, with one row for each of the entities in the triangle: the three vertices, the three 
edges, and the triangle itself. The graph at the left hand side represents the ordering 
relation, that is the inclusion relationships. Each "node" in the graph is labeled with the 
ID of the entity it represents and there is a "link" from each node to the node representing 
the next most inclusive entity. (Note that the links are directional.) An entity is included 
in another entity if there is a path in the graph from the node corresponding to the first 
entity to the node corresponding to the second entity. So, for instance, by examining the 
graph we can see that vertex v0 (ID = 0) is included in the triangle t0 (ID = 6) because 
there is a link from node 0 to node 3 and a link from node 3 to node 6. 

SIMPLE_SPATIAL_OBJECT

5

3
1

0

6
4

0 v0 vertex
ID NAME TYPE

1 v1 vertex

2 v2 vertex

3 e0 edge

4 e1 edge

5 e2 edge
6 t0 triangle

2  

Figure 12:The SIMPLE_SPATIAL_OBJ poset. 
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If entity A is "next most inclusive" to entity B, it simply means there is no entity C that 
includes B but is included in A. Thus for any given entity, there may be more than one 
next most inclusive entity. For instance both edge e0 and edge e2 are "next most 
inclusive" to vertex v0. This is exactly the meaning of the term "partial order"; the 
members of the base set are ordered with respect to each other, but not totally ordered so 
that every member has exactly one "next larger" member. In a partial order, a member 
can have one next larger, many next largers, or no next largers. Indeed, the definition of a 
partially ordered set includes the case in which every member of the base set has no next 
larger members. This corresponds the ordinary, unordered set. 

The ordering relation of a partially ordered set is a generalization of the familiar relation 
"less than or equal to". It is customary to call the ordering relation by that name and to 
refer to it with the symbol "≤". So, for instance, we can say v0 ≤ e0 in the above example, 
meaning that v0 is included in e0. 

4.3 Generalization of the relational algebra operators 

All the operators of the relational algebra can be generalized to work on posets. The 
effect of any of the operators on the table part of a poset is the same as in the relational 
case, but each operator must be generalized to also operate on the graph part. We will 
revisit this generalization in more detail, once we have introduced some additional 
concepts. 

4.4 The poset algebra operators 

In addition to the relational algebra operators, there are a number of operators that are 
derived from the order relation. We describe two of the most important here. In the 
following, a1, a2, etc. are rows in a poset table A. 

4.4.1 is_less_than_or_equal_to or "≤" 

a1 is_less_than_or_equal_to a2, if and only if there is a path in the graph from the node 
representing a1 to the node representing a2. 

4.4.2 down 

Down(a) returns a poset that contains all the members of A that are less than or equal to 
a. The result is called the down set of a. Figure 13 shows the result of the down operator 
applied to the member with id = 4 in the SIMPLE_SPATIAL_OBJECT poset. 
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1
4

ID NAME GEOMETRY

1 v1 vertex

2 v2 vertex
4 e1 edge

2

id name geometry

SPATIAL_OBJECT_SCHEMA.top

 

Figure 13: down(SIMPLE_SPATIAL_OBJECT.ID = 4) 

The name "down set" originates in the standard mathematical practice of drawing the 
links such that if a1 ≤ a2, then a1 is below a2 in the graph; smaller members are always 
below larger members. In such a "vertical" graph, the down operator literally goes down 
the graph from its argument, hence the name. In order to be visually consistent with the 
rows in the table, we have drawn our graph so that the links always point from right to 
left. Perhaps we should call it the "right" operator, given the way we draw the graph! 

4.5 Lattices and the lattice algebra operators 

The operators we have defined so far operate on the entities that specifically appear in the 
table. In the applications in which inclusion plays an important role, it is often important 
to treat a collection of entities as if it was an entity itself, a sort of "virtual" row in the 
table. For instance, in spatial applications it is often important to deal with the boundary 
of an object. The boundary of our SIMPLE_SPATIAL_OBJECT is a collection of three 
edges, but we would like to treat it as a single entity, the boundary. 

Lattice theory, another branch of the mathematical theory of inclusion, allows us to do 
exactly that. Associated with every finite poset is another poset, a special kind of poset 
called a finite distributive lattice ("FDL"). Figure 14 shows the FDL for the 
SIMPLE_SPATIAL_OBJECT poset. The number of members of an FDL lattice is 
always much greater than the number of members of the poset that generates it. For 
simplicity and readability, we have drawn only the graph, in the traditional mathematical 
orientation. We have also substituted icons showing the geometrical meaning of each 
member of the lattice instead of ID attributes as used in previous figures. 
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201

 

Figure 14: The finite distributive lattice for poset SIMPLE_SPATIAL_OBJECT.  

Intuitively, the lattice contains all the members of the original poset plus all distinct 
combinations of them. Two different combinations of members are distinct if they do not 
represent the same inclusion. For instance, the combination of just edges e0 and e1 is 
distinct from the combination of edges e0, e1, and e2, since the former combination does 
not include all the points in edge e2. Conversely, the combination of the three edges is 
not distinct from the combination of the three edges and the three vertices. These two 
combinations (edges and edges+vertices) are equivalent because the vertices are already 
included in the edges; adding them to the combination doesn't include any additional 
points. 

As consequence, the lattice in Figure 14 contains a single member for the boundary, it 
does not contain separate members for the collection of three edges and for the collection 
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containing three edges and three vertices. The lattice is not the set of all subsets of rows 
of the table. The formal mathematical definition of the lattice is that it is the set of all 
down sets of the original poset, but we won't need to go into that. The notion of all 
distinct combinations will do. 

So the lattice generated by a poset is a poset itself and can be thought of in the table + 
graph picture. Its table contains all distinct combinations of rows of the original poset and 
its graph contains all the inclusion relations. 

In a lattice there are two additional operations defined. In the following l1, l2, … ln are 
members of a lattice L. 

4.5.1 Join or least_upper_bound 

Join( l1, l2, … , ln ) returns unique the smallest member of L which is greater than or equal 
to all of its inputs.  

Note: the term join has another meaning in the context of relational data bases, but since 
we will not be using the term in its relational meaning, we hope no confusion will result. 

4.5.2 Meet or greatest_lower_bound 

Meet(l1, l2, … , ln) returns unique the largest member of L which is less than or equal to 
all of its inputs.  

4.6 The sheaf operators 

So far, we have dealt only with row inclusion. We still need to incorporate column 
inclusion into the model. To do this, we need to expand our table + graph picture so that 
there are two graphs associated with the table. The graph we already had, which we will 
now refer to as the row graph, and a new graph, which we will call the column graph. 
The column graph, naturally enough, describes the inclusion structure of the columns. 

In the sheaf data model, every lattice has an associated lattice, called its schema. The 
column graph of a lattice is defined by the row graph of its schema. The schema 
relationship is recursive: a schema lattice has to have a schema lattice. This recursion is 
terminated in a special lattice, the primitive schema lattice, which is its own schema. 

A simple primitive schema lattice is shown in Figure 15. Note that the primitive schema 
lattice uses its own row graph as its column graph. 



SDM Context and Overview  David M. Butler 

Release 1.2 19 of 30 10/1/2012 
 © 2012 Limit Point Systems, Inc. 

SIZE

PRIMITIVE_SCHEMA

TYPENAME

name string 4
type string 4
size integer 4

name
type
size

name type size

PRIMITIVE_SCHEMA.top

top

 

Figure 15: A simple primitive schema lattice. 

The previous SIMPLE_SPATIAL_OBJECT lattice with its corresponding schema lattice 
is shown in Figure 16 and Figure 17, respectively. 

SIMPLE_SPATIAL_OBJECT

5

3
1

0

6
4

0 v0 vertex
ID NAME GEOMETRY

1 v1 vertex

2 v2 vertex

3 e0 edge

4 e1 edge

5 e2 edge
6 t0 triangle

2

id name geometry

SPATIAL_OBJECT_SCHEMA.top

 

Figure 16: The row and column graphs for SIMPLE_SPATIAL_OBJECT 
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SIZE

SPATIAL_OBJECT_SCHEMA

TYPENAME

id integer 4
name string 4

geometry string 4

id
name

geometry

name type size

PRIMITIVE_SCHEMA.top

top

 

Figure 17: The schema lattice for SIMPLE_SPATIAL_OBJECT 

The association between a lattice and its schema lattice introduces three more operators: 

4.6.1 The exponentiation operator 

The exponentiation operator EXP(L), returns a lattice with schema L. The table and row 
graph of the result are empty. 

4.6.2 The logarithm operator 

The logarithm operator, LOG(L), returns the schema lattice associated with lattice L. 

4.6.3 The restriction operator 

RESTRICT L TO s, where s is a member of the schema of L, returns the projection of L 
onto the columns in the down set of s.  

4.6.4 Sheaves 

The table of a lattice L is the Cartesian product of the rows of the schema lattice, where 
each row is interpreted as a domain. By using RESTRICT L TO s successively for each 
member s of the schema lattice we can define a family of tables, one for each member of 
the schema. Each member of this family is itself a Cartesian product over a subset of the 
rows of the schema lattice. 

An association, or map, generated in this manner between a schema lattice and a family 
of Cartesian product sets is called a sheaf. The schema lattice is referred to as the source 
of the sheaf and the family of product sets is referred to as the target of the sheaf. We will 
call the largest member of the target, the table which is restricted to produce all the other 
members of the target, the top table. 
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The row graph of the top table is not defined by the schema. It can be arbitrarily chosen 
by the user. Once the row graph is defined, the top table defines an FDL and can itself be 
used as the schema for another lattice.  

Hence every lattice defines a sheaf of Cartesian product sets (tables) and this sheaf can be 
viewed as the primary object of the data model. The table, row graph, and column graph, 
as well as the relational, poset, lattice, and sheaf operators can all be considered different 
aspects of the sheaf object. This is the origin of the name sheaf data model. 

4.6.5 Data dependent schema 

The sheaf structure and operators introduce column inclusion into the data model, but 
they also an additional, critical feature: data dependent schema. The schema of a table is 
defined by the contents of another table, not predefined to some fixed set of columns. 
This feature is essential for representing simulation data. 

4.7 Generalization of the relational algebra operators revisited 

We have now introduced all the additional concepts we need and can return to the 
relational operators. As we mentioned above, all the operators of the relational algebra 
can be generalized to work on sheaves. The effect of any of the operators on the table part 
of a sheaf is the same as in the relational case, but each operator must be generalized to 
also operate on the row and column graphs. We quickly sketch the appropriate 
generalization for each of the six operators. 

4.7.1 Cartesian product 

The column graph (schema) of the Cartesian product A × B of two sheaves is the disjoint 
union of the column graphs of A and B. This means that, as in the relational model, the 
table of the product has the columns of A and the columns of B, with rows for each 
possible pair of values, one from A and one from B. 

However, there are several possible choices for the row graph part. Let (a1, b1) and (a2, 
b2) be two rows in the product table: 

• product order: (a1, b1) ≤ (a2, b2) precisely when a1 ≤ a2 and b1 ≤ b2 

• lexicographic order: (a1, b1) ≤ (a2, b2) precisely when a1 ≤ a2 or a1 = a2 and b1 ≤ b2 

• user-defined order: any order relation the user wishes to define 

The choice of order must be provided as a parameter to the operator. 

4.7.2 selection 

The table part of the result is the same as for the relational operator. The column graph of 
the result is the same as the column graph of the input. The row graph is the same as the 
input, but all nodes and links that refer to rows that aren't in the result are removed. 
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4.7.3 projection 

The column graph of the result is the column graph of the input, with all nodes and links 
that refer to columns that are not in the output removed. The row graph of the result is the 
same as the row graph of the input, except that if any rows are discarded because they are 
duplicates, then so are the nodes and links in the graph that refer to them. 

4.7.4 union 

The column graph of the result is the same as column graphs of the two inputs, which 
must be the same as each other. The table part is the same as in the relational model. The 
row graph is the union of the row graphs of the input posets. 

4.7.5 intersection 

The column graph of the result is the same as the column graphs of the inputs. The table 
part is the same as in the relational model. The row graph is the union of the row graphs 
of the input posets, with all nodes and links that refer to rows that aren't in the result 
removed. 

4.7.6 rename 

The rename operator is the same as in the relational model. 

4.8 Summary 

The sheaf data model provides a formal, mathematical data model that generalizes the 
relational data model and explicitly incorporates inclusion. The algebra associated with 
the model contains relational, poset, lattice, and sheaf operators which provide the basis 
for a complete data definition and manipulation language. 

5 Implementation of the sheaf data model 

The sheaf structure and its operators form an extremely useful abstraction. It suffers from 
a severe practical problem however. Remember that the source of a sheaf is the finite 
distributive lattice (FDL) containing "all possible distinct combinations" of members of a 
client-defined poset. The problem is that even for very small posets, the number of "all 
possible distinct combinations" of rows is astronomical. It is completely infeasible to 
generate and store the entire source lattice. For the same reason, it is infeasible to store 
the target of the sheaf, i.e. the family of product sets. 

A major component in the cluster of insights and inventions described in this document is 
the combination of data structure and algorithms that allow us to utilize the sheaf 
formalism without actually generating the entire source and target. We refer to this 
combination as the finite sheaf data type. In order to understand this data type, we first 
have to introduce a few facts about FDLs. 
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5.1 Some features of finite distributive lattices 

As we said above, an FDL contains the members of the original poset and all distinct 
combinations of them. The members of the original poset are referred to as the join-
irreducible members or "jims" of the lattice, while the "distinct combinations" are "join 
reducible members" or "jrms" (pronounced "germs").  

The central theorem of the theory of FDLs is the Birkhoff representation theorem, which 
states that a jrm is equal to the join of the collection of jims contained in its down set. 
(This collection of jims is the "distinct combination" associated with the jrm.) 

From the usual mathematical point of view, an  FDL is a given, pre-existing base set and 
ordering relation. We can think of the table and graph as fully instantiated. Every member 
of the lattice is represented by a row and a node in the graph; every inclusion relationship 
is represented by a path in the graph. From this point of view, the Birkhoff representation 
theorem is a statement about a relationship that must exist between the nodes and links of 
the graph. The join and meet operators are queries that find the proper member using the 
(fully instantiated) graph. 

5.2 The basic representation strategy 

The fundamental mechanism that makes it practical to use the sheaf formalism is a form 
of deferred computation or "lazy evaluation". Instead of mimicking the mathematics and 
instantiating the entire lattice, we instantiate the jims and only the jrms the user 
specifically requests. This approach reduces the storage requirements to feasible levels, 
but forces extension and reinterpretation of the mathematics. 

5.3 The finite sheaf data type 

The finite sheaf data type consists of a data structure and a collection of operators on the 
data structure that implement the lazy evaluation strategy described above.  

5.3.1 Data structure 

The data structure consists of the following components and interpretations: 

• schema: a reference to another instance of a finite sheaf data type 

• table: a collection of records. The table and record types are widely used in 
computer science and can be represented in a variety of ways, any of these well-
known methods are suitable. There must be a one-to-one correspondence between 
rows in the schema and columns in the table. 

• row graph: a directed acyclic graph. The directed acyclic graph ("DAG") is also a 
well-known data structure with a variety of representations, any of which are 
acceptable. There must be a node in the graph for each row in the table, but the 
graph in general will contain additional nodes, not associated with a specific row 
in the table. 



SDM Context and Overview  David M. Butler 

Release 1.2 24 of 30 10/1/2012 
 © 2012 Limit Point Systems, Inc. 

The interpretation of this data structure is that it represents the top table of the sheaf 
defined by the schema. Each row in the table represents a jim in the row lattice of the 
table.  

The row graph represents the order relation for the row lattice. Nodes in the graph which 
are correspond to rows in the table represent jims in the lattice, while the remaining nodes 
represent jrms. The links in the graph represent the "next most inclusive" relation (also 
known as the cover relation in mathematical lattice theory). The collection of jims 
associated with each jrm by the Birkhoff theorem is generated by traversing the graph 
below the jrm. 

In the usual mathematical formulation of an FDL, each member is unique. But in 
practical computing applications, a user may want to have multiple copies of a lattice 
member. The data structure supports this by having the graph represent a "lexicographic" 
ordering relation. A lexicographic ordering relation is a generalization of the order words 
appear in a dictionary. Words are first ordered by their first letter. All words with the 
same first letter are then ordered by their second letter, etc. The "first letter" in the finite 
sheaf order is derived from the Birkhoff theorem. Member l1 is less than member l2 if the 
set of jims in the down set of l1 is a subset of the set of jims in the down set of l2. The 
"second letter" is the order the members were created in.  

Lattice members which are copies have the same set of jims in their down set, the same 
"first letter", and are ordered relative to each other by the "second letter", the order they 
were created in. 

The table and graph combination stores all the jims of the row lattice, but only those jrms 
that the user specifically creates. 

5.3.2 Operators 

The finite sheaf data type supports all the relational, poset, lattice, and sheaf operators of 
the sheaf data model, as described above. In addition, the finite sheaf data type extends 
and reinterprets the mathematics as follows: 

First, we must extend the set of operators to include operations for creating the jims and 
the order relation: 

CREATE_JIM: creates a jim as a row in the table and corresponding node in the graph 

DELETE_JIM(JIM_ID): deletes the row and node corresponding to the jim with 
identifier jim_id. 

CREATE_LINK(LESSER_ID, GREATER_ID): creates a link in the graph between the 
jims identified by lesser_id and greater_id 

DELETE_LINK(LESSER_ID, GREATER_ID): deletes the link between the jims 
identified by lesser_id and greater_id. 
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Second, we must reinterpret the join and meet operators. Mathematically the result of 
these operations is guaranteed to exist, and hence these are query operations. They find 
the proper member using the order relation (i.e. row graph.) But if only previously 
requested jrms have been instantiated, then the result of a meet or join may not exist. The 
result has to be created and linked into the graph. In other words, instead of deriving the 
result from the order relation, the order relation must be derived from the result. 

5.4 Efficient access to secondary storage 

Problems of practical interest require the table and graphs associated with the finite sheaf 
type to be stored on disk, outside of the main memory of the computer. Efficient access to 
such externally stored data must take into account the properties and performance 
characteristics of disk storage. This problem has been extensively studied and solved in 
the context of relational data base management technology. 

The standard solution relies on constructing hierarchical index structures which allow 
retrieval of any record with a minimum number of disk accesses. The best known index 
structures are the so-called "B-tree" and it variants. Nodes in the B-tree correspond to 
hierarchical groupings of records in the table. 

The key to efficient indexing of the finite sheaf is the following observation: the 
hierarchical groupings of the B-tree are jrms in the row lattice. They are jrms chosen 
specifically to optimize disk access. Hence, the row graph itself can be used as an index. 
In addition to the jrms explicitly constructed by the user, internal routines of the finite 
sheaf type can construct jrms intended purely for use in achieving efficient disk access. 

6 Applications 

6.1 Spatial data 

The mathematical study of spatial structure is organized into two broad disciplines. 
Topology is the study of continuity, nearness, and connectivity without regard to explicit 
shape and size. Geometry adds shape, size and measure to topology. It is a well-
established, but not widely known, fact of mathematics that the theory of topology can be 
formulated entirely in terms of lattice theory. Furthermore, recent research in 
computational geometry has established that all existing methods of geometry 
representation can be described using finite distributive lattices.  

The sheaf data model provides a direct realization of this mathematical structure and 
hence is ideal for storing and manipulating spatial data. 

There is however, an additional operator, not described above, that is particularly 
convenient for creating instances of the finite sheaf type representing spatial data. Spatial 
data often appears in the form of a mesh, a large number of interconnected geometric 
primitives, all the same type, or of related types. As a simple example, the shape of a 
product may be specified in a CAD/CAM system by a triangle mesh - a large number of 
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triangles connected together at their edges so as to cover the surface of the product. Such 
meshes are even more common when spatial data is used in the context of a simulation. 

Mesh data is usually presented by specifying the number and type of the geometric 
primitive and by specifying the so-called "connectivity" data. The connectivity data 
describes how the primitives are to be connected, typically by listing the vertices that 
appear in each primitive. So a triangle mesh could be specified by stating the number of 
triangles, then specifying 3 vertex identifiers for each triangle. Two triangles are 
implicitly connected at a point if they both contain the same vertex, and connected at an 
edge if they share two vertices. 

The additional operator is the cellular lattice constructor that makes it convenient and 
efficient to build the table and graph of the lattice corresponding to a mesh, given the 
usual input data. 

6.2 Object-oriented data 

Recent research in computer science has demonstrated that the inheritance relationships 
between classes in an object-oriented application generate a mathematical lattice. The 
sheaf data model is thus able to directly and precisely represent inheritance relationships. 

Object containment relationships can be divided into two categories: cyclic and acyclic 
relationships. In a cyclic relationship A contains B contains C contains … contains A. In 
other words, the chain of relationships eventually forms a circle. In an acyclic 
relationship, the chain is linear. The sheaf data model, as stated, can represent only 
acyclic containment relationships. 

The combination of strong support for IS_A relationships with support for acyclic 
HAS_A relationships makes the sheaf model a good, but not ideal, fit for object-oriented 
data. 

6.3 Numerical simulation and scientific data 

As we described above, simulation results typically represent the dependence of some 
property on space and time. In mathematical physics, such space and time dependent 
properties are called fields. Once again, it is a well-established but not well known fact 
that the abstract fields of mathematical physics can be represented by sheaves.  

An important part of the invention described here is the method by which the concrete 
field data of numerical simulation can be interpreted as a sheaf. 

An field is a map that associates a value of some property, called the fiber space, with 
every point in some object, called the base space. Both the fiber space and the base space 
can be represented as finite sheaves. The representation of an abstract field as a finite 
sheaf requires the following information be provided: 

• Base space sheaf, for instance Figure 16 
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• Fiber space schema sheaf, for instance Figure 18 

• Discretization map: a map that associates each member of the base space lattice 
with a member of an arbitrary finite sheaf  called the discretization of the base 
space. For instance, Figure 19 shows a discretization map and Figure 20 shows 
the corresponding discretization. The image of a member of the base space lattice 
under the discretization map is also called the discretization of the member. 
Typically the discretization is generated from the base space lattice itself. For 
instance the jims of the discretization are chosen to be the set of all the vertices in 
a mesh and the discretization jrm associated with a base space jrm is the subset of 
vertices contained in the down set of the base space jrm. 

• Evaluation subposet: a subset of the base space lattice. This subset must be chosen 
so that it covers the base space, for instance, the subposet containing only member 
6 (the entire triangle) in Figure 16. (In a larger example, a typical evaluation 
subposet would be the set of all triangles in a triangle mesh.) Every member of the 
evaluation subposet is assumed to carry a local coordinate system. 

• Evaluation method: a rule that can used to compute the value of the field given 
the local coordinates of a point in a member of the evaluation subposet and the 
degrees of freedom (defined below) associated with that member. For instance, a 
common evaluation method on the triangle would be linear interpolation. 

The schema, Figure 21, for the sheaf of fields, Figure 22, with a given base space and 
fiber space is the tensor product lattice of the discretization and the fiber space schema. 
The jims of the tensor product lattice are all pairs of the form (d, f) where d is a jim of the 
discretization and f is a jim of the fiber space schema. As with any finite sheaf, there is a 
column in the table of the sheaf for each jim in its schema. The domain of the column 
associated with schema jim (d,f) is defined to be the domain  of f; the domain of d is 
ignored. A field is represented by a row in the table and the data in the cells of the row is 
referred to as the degrees of freedom of the field. The degrees of freedom associated with 
any pair (b, f), where b is a member of the base space lattice and f is a member of the 
fiber schema, is the restriction of the row to the schema member (d(b), f), where d(b) is 
the discretization of b. 

Any numerical representation of a field can be interpreted as a sheaf using the above 
method. The ability of the sheaf data model to directly represent arbitrary fields, in 
addition to traditional relational data, spatial data, and object-oriented data, makes it an 
ideal model for scientific data. 
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Figure 18: A fiber space schema for a real-valued field. 
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Figure 19: A discretization map for SIMPLE_SPATIAL_OBJECT 
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Figure 20: A discretization of SIMPLE_SPATIAL_OBJECT 
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Figure 21: The schema for a real-valued field on SIMPLE_SPATIAL_OBJECT 
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REAL FIELD ON SIMPLE SPATIAL OBJECT

(1,VALUE) (0,VALUE) (2,VALUE)
24.0 81.6 -10.2

230.5 3.4 98.7
-45.2 567.9 26.6
7.0 7.0 7.0

0
1
2
3  

Figure 22: The sheaf REAL_VALUED_FIELD_ON_SIMPLE_SPATIAL_OBJECT 
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